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WebbPSF is a Python package that computes simulated point spread functions (PSFs) for NASA’s JWST and WFIRST
observatories. WebbPSF transforms models of telescope and instrument optical state into PSFs, taking into account
detector pixel scales, rotations, filter profiles, and point source spectra. It is not a full optical model of JWST, but rather
a tool for transforming optical path difference (OPD) maps, created with some other tool, into the resulting PSFs as
observed with JWST’s or WFIRST’s instruments.

Fig. 1: Sample PSFs for JWST’s instrument suite, all on the same angular scale and display stretch.

Fig. 2: Sample PSFs for the filters in the WFIRST WFI.

What this software does:

• Uses OPD maps precomputed by detailed optical simulations of JWST and WFIRST, and in the case of JWST
based on instrument and telescope flight hardware cryo-vacuum test results.

• For JWST, computes PSF images with requested properties for any of JWST’s instruments. Supports imaging,
coronagraphy, and most spectrographic modes with all of JWST’s instruments. IFUs are yet to come.

• For WFIRST, computes PSFs with the Wide Field Imager, based on recent GSFC optical models, including field-
and wavelength-dependent aberrations. A preliminary version of the Coronagraph Instrument is also available.

• Provides a suite of tools for quantifying PSF properties such as FWHM, Strehl ratio, etc.

What this software does NOT do:

• Contain in itself any detailed thermal or optical model of JWST or WFIRST. For the results of end-to-end
integrated simulations of JWST, see for instance Predicted JWST imaging performance (Knight, Lightsey, &
Barto; Proc. SPIE 2012). For WFIRST modeling, see the WFIRST Reference Info page

• Model spectrally dispersed PSFs produced by any of the spectrograph gratings. It does, however, let you produce
monochromatic PSFs in these modes, suitable for stitching together into spectra using some other software.

• Model most detector effects such as pixel MTF, intrapixel sensitivity variations, interpixel capacitance, or any
noise sources. Add those separately with your favorite detector model code. (*Note, one particularly significant
detector scattering for MIRI imaging has now been added.)

Contributors: WebbPSF has been developed by Marshall Perrin, Joseph Long, Neil Zimmerman, Robel Geda, Shan-
non Osborne, Marcio Melendez Hernandez, Lauren Chambers, and Keira Brooks, with contributions from Jarron
Leisenring, Ewan Douglas, Charles Lajoie, Megan Sosey, and the developers of the astropy-helpers template frame-
work.
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Part I

Getting Started with WebbPSF
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The WebbPSF software system is composed of two Python packages: a lower-level optical propagation library (POPPY)
plus an implementation of the JWST instruments using that library (WebbPSF). This documentation explains the pro-
gramming interfaces and graphical user interface of WebbPSF, as well as providing a quick overview of POPPY.

Quickstart Jupyter Notebook

This documentation is complemented by an Jupyter Notebook format quickstart tutorial. Downloading and running
that notebook is a great way to get started using WebbPSF.

What’s new in the latest release?
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CHAPTER 1

Introduction

Conceptually, this simulation code has three layers of abstraction:

• A base package for wavefront propagation through generic optical systems (provided by POPPY)

• Models of the JWST instruments implemented on top of that base system (provided by WebbPSF)

• An optional graphical user interface

It is entirely possible (and indeed recommended for scripting) to just use the WebbPSF interface without the GUI, but
the GUI can provide a quicker method for many simple interactive calculations.

1.1 Why WebbPSF?

For any space telescope, an ability to predict the properties of point spread functions (PSFs) is needed before launch for
a wide range of preparatory science studies and tool development. Tools for producing high quality model PSFs must
be easily accessible to the entire astronomical community. WebbPSF provides an easy-to-use tool for PSF simulations
of JWST and WFIRST, in the style of the highly successful “Tiny Tim” PSF simulator for Hubble.

WebbPSF simulations are based on a mixture of observatory design parameters and as-built properties. The software
provides a highly flexible and scriptable toolkit in Python for simulating a very wide range of observing modes and sci-
ence scenarios, using efficient computational methods (including optional parallelization and use of GPUs). WebbPSF
is a key building block in higher-level observatory simulators, including the JWST Exposure Time Calculator.

1.2 Algorithms Overview

Read on if you’re interested in details of how the computations are performed. Otherwise, jump to Quick Start.

The problem at hand is to transform supplied, precomputed OPDs (derived from a detailed optomechanical model of
the telescope) into observed PSFs as seen with one or more of JWST’s various detectors. This requires knowledge
of the location and orientation of the detector planes, the properties of relevant optics such as bandpass filters and/or
coronagraphic image and pupil plane masks, and a model of light propagation between them.

7
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Instrumental properties are taken from project documentation and the published literature as appropriate; see the
References for detailed provenance information. Optics may be described either numerically (for instance, a FITS
file containing a mask image for a Lyot plane or a FITS bintable giving a spectral bandpass) or analytically (for
instance, a coronagraph occulter described as a circle of a given radius or a band-limited mask function with given
free parameters).

WebbPSF computes PSFs under the assumption that JWST’s instruments are well described by Fraunhofer diffraction,
as implemented using the usual Fourier relationship between optical pupil and image planes (e.g. Goodman et al.
1996). Two specific types of 2D Fourier transform are implemented: a Fast Fourier Transform and a discrete Matrix
Fourier Transform.

The familiar Fast Fourier Transform (FFT) algorithm achieves its speed at the cost of imposing a specific fixed rela-
tionship between pixel sampling in the pupil and image planes. As a result, obtaining finely sampled PSFs requires
transforming very large arrays consisting mostly of zero-padding. A more computationally attractive method is to
use a discrete matrix Fourier transform, which provides flexibility to compute PSFs on any desired output sampling
without requiring any excess padding of the input arrays. While this algorithm’s computational cost grows as O(N^3)
versus O(N log N) for the FFT, the FFT’s apparent advantage is immediately lost due to the need to resample the
output onto the real pixel grid, which is an O(N^2) operation. By performing a matrix fourier transform directly to the
desired output pixel scale, we can achieve arbitrarily fine sampling without the use of memory-intensive large padded
arrays, and with lower overall computation time.

Further optimizations are available in coronagraphic mode using the semi-analytic coronagraphic propagation algo-
rithm of Soummer et al. 2007. In this approach, rather than propagating the entire wavefront from pupil to image and
back to pupil in order to account for the coronagraphic masks, we can propagate only the subset of the wavefront that
is actually blocked by the image occulter and then subtract it from the rest of the wavefront at the Lyot plane. This
relies on Babinet’s principle to achieve the same final PSF with more computational efficiency, particularly for the
case of highly oversampled image planes (as is necessary to account for fine structure in image plane occulter masks).
See Soummer et al. 2007 for a detailed description of this algorithm.

1.2.1 Types of Fourier Transform Calculation in WebbPSF

• Any direct imaging calculation, any instrument: Matrix DFT

• NIRCam coronagraphy with circular occulters: Semi-Analytic Fast Coronagraphy and Matrix DFT

• NIRCam coronagraphy with wedge occulters: FFT and Matrix DFT

• MIRI Coronagraphy: FFT and Matrix DFT

• NIRISS NRM, GR799XD: Matrix DFT

• NIRSpec and NIRISS slit spectroscopy: FFT and Matrix DFT

See Optimizing Performance and Parallelization in the POPPY documentation for more details on calculation perfor-
mance.

1.3 Getting WebbPSF

The WebbPSF software is installable through pip, but it depends on data files distributed through STScI. Since there is
more than one way to install scientific Python software, the possibilities are covered in Requirements & Installation.

The AstroConda distribution includes WebbPSF and its associated data files. If you installed the packages into an
environment named astroconda, the command to upgrade all STScI software (including WebbPSF) to the latest
version would be conda update --name astroconda stsci.

For those who prefer to use pip (and have NumPy, SciPy, and matplotlib already installed) the command is:

8 Chapter 1. Introduction
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$ pip install -U webbpsf

This command installs (or upgrades) WebbPSF to the latest version on PyPI. Before WebbPSF will run, you must
download the WebbPSF data files and set the WEBBPSF_DATA environment variable to point to the place you extracted
them. You may also want to install Pysynphot, an optional dependency, to improve PSF fidelity.

For detailed installation instructions, refer to Requirements & Installation. (This document also explains how to install
optional dependencies, install supporting data files, install from GitHub source, etc.)

1.4 Quick Start

First, download and install the software. Then just start python and

>>> import webbpsf
>>> webbpsf.gui()

and you should be able to test drive things using the GUI:

Fig. 1: The main window of the WebbPSF GUI when first launched.

1.4. Quick Start 9
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Most controls should be self-explanatory, so feel free to experiment. The article Using WebbPSF via the Graphical
User Interface provides a detailed explanation of the GUI options. (Please note, the GUI only provides basic ac-
cess to WebbPSF for introductory purposes; the Python programming interface is the recommended best way to use
WebbPSF.)

WebbPSF can save a detailed log of its calculations and results. This will by default be shown on screen but can also
be saved to disk.

>>> webbpsf.setup_logging(filename='my_log_file.txt')

Log settings are persistent between sessions, so you can just set this once the very first time you start WebbPSF and
logging will be enabled thereafter until you explicitly change it.

For further information, consult Using WebbPSF via the Python API or Using WebbPSF via the Graphical User
Interface.

10 Chapter 1. Introduction



CHAPTER 2

Requirements & Installation

The latest released version of WebbPSF can be installed with the conda package management system or using pip.

2.1 Recommended best method: Installing via AstroConda

For ease of installation, we recommend using AstroConda, an astronomy-optimized software distribution for scientific
Python built on Anaconda. Install AstroConda according to their instructions, then activate the environment with:

$ source activate astroconda

(Note: if you named your environment something other than astroconda, change the above command appropriately.)

Next, install WebbPSF (along with all its dependencies and required reference data) with:

(astroconda)$ conda install webbpsf

Optional: sign up to receive announcement of updates

This is entirely optional, but you may wish to sign up to the mailing list webbpsf-users@stsci.edu. This is a low-
traffic moderated announce-only list, to which we will periodically post announcements of updates to this software.

To subscribe, visit the maillist.stsci.edu server

2.2 Installing with conda (but no AstroConda)

If you already use conda, but do not want to install the full suite of STScI software, you can simply add the AstroConda
channel and install WebbPSF as follows (creating a new environment named webbpsf-env):
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$ conda config --add channels http://ssb.stsci.edu/astroconda
$ conda create -n webbpsf-env webbpsf
$ source activate webbpsf-env

Upgrading to the latest version is done with conda update -n webbpsf-env --all.

Warning: You must install WebbPSF into a specific environment (e.g. webbpsf-env); our conda package will
not work if installed into the default “root” environment.

2.3 Installing with pip

WebbPSF and its underlying optical library POPPY may be installed from the Python Package Index in the usual
manner for Python packages.

$ pip install --upgrade webbpsf
[... progress report ...]

Successfully installed webbpsf

Note that pip install webbpsf only installs the program code. If you install via pip, you must manually download
and install the data files, as :ref:‘described below <data_install>‘. To obtain source spectra for calculations, you
should also follow installation instructions for pysynphot.

2.4 Installing or updating pysynphot

Pysynphot is an optional dependency, but is highly recommended. Pysynphot is best installed via AstroConda. Further
installation instructions can be found here in the POPPY docs.

2.5 Installing the Required Data Files

If you install via pip or manually, you must install the data files yourself. If you install via Conda, the data files are
automatically installed, in which case you can skip this section.

Files containing such information as the JWST pupil shape, instrument throughputs, and aperture positions are dis-
tributed separately from WebbPSF. To run WebbPSF, you must download these files and tell WebbPSF where to find
them using the WEBBPSF_PATH environment variable.

1. Download the following file: webbpsf-data-0.8.0.tar.gz [approx. 240 MB]

2. Untar webbpsf-data-0.8.0.tar.gz into a directory of your choosing.

3. Set the environment variable WEBBPSF_PATH to point to that directory. e.g.

export WEBBPSF_PATH=$HOME/data/webbpsf-data

for bash. (You will probably want to add this to your .bashrc.)

You should now be able to successfully import webbpsf in a Python session, or start the GUI with the command
webbpsfgui.
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Warning: If you have previously installed the data files for an earlier version of WebbPSF, and then update to a
newer version, the software may prompt you that you must download and install a new updated version of the data
files.

For STScI Users Only

Users at STScI may access the required data files from the Central Storage network. Set the following environment
variables in your bash shell. (You will probably want to add this to your .bashrc.)

export WEBBPSF_PATH="/grp/jwst/ote/webbpsf-data"
export PYSYN_CDBS="/grp/hst/cdbs"

2.6 Software Requirements

Required Python version: WebbPSF 0.8 and above require Python 3.5 or higher.

Required Python packages:

• Recent versions of NumPy, SciPy and matplotlib, if not installed already.

• Astropy

• POPPY

Recommended Python packages:

• pysynphot enables the simulation of PSFs with proper spectral response to realistic source spectra. Without this,
PSF fidelity is reduced. See below for installation instructions for pysynphot. Pysynphot is recommended for
most users.

Optional Python packages:

Some calculations with POPPY can benefit from the optional packages psutil and pyFFTW, but these are not needed
in general. See the POPPY installation docs for more details. These optional packages are only worth adding for speed
improvements if you are spending substantial time running calculations.

Additional packages are needed for the optional use of GPUs to accelerate calculations. See the POPPY documenta-
tion.

2.7 Installing a pre-release version or contributing to WebbPSF de-
velopment

The WebbPSF source code repository is hosted at GitHub, as is the repository for POPPY. Users may clone or fork in
the usual manner. Pull requests with code enhancements welcomed.

To install the current development version of WebbPSF, you can use pip to install directly from a git repository. To
install WebbPSF and POPPY from git, uninstall any existing copies of WebbPSF and POPPY, then invoke pip as
follows:

$ pip install -e git+https://github.com/spacetelescope/poppy.git#egg=poppy \
-e git+https://github.com/spacetelescope/webbpsf.git#egg=webbpsf

2.6. Software Requirements 13
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This will create directories ./src/poppy and ./src/webbpsf in your current directory containing the cloned repos-
itory. If you have commit access to the repository, you may want to clone via ssh with a URL like git+ssh:/
/git@github.com:spacetelescope/webbpsf.git. Documentation of the available options for installing directly
from Git can be found in the pip documentation.

Remember to install the required data files, if you have not already installed them.
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CHAPTER 3

Using WebbPSF via the Python API

This module provides the primary interface for programmers and for interactive non-GUI use. It provides five classes
corresponding to the JWST instruments, with consistent interfaces. See this page for the detailed API; for now let’s
dive into some example code.

Additional code examples are available later in this documentation.

3.1 Usage and Examples

Simple PSFs are easily obtained:

>>> import webbpsf
>>> nc = webbpsf.NIRCam()
>>> nc.filter = 'F200W'
>>> psf = nc.calc_psf(oversample=4) # returns an astropy.io.fits.HDUlist containing PSF and header
>>> plt.imshow(psf[0].data) # display it on screen yourself, or
>>> webbpsf.display_psf(psf) # use this convenient function to make a nice log plot with␣
→˓labeled axes
>>>
>>> psf = nc.calc_psf(filter='F470N', oversample=4) # this is just a shortcut for setting the filter,
→˓ then computing a PSF
>>>
>>> nc.calc_psf("myPSF.fits", filter='F480M') # you can also write the output directly to disk␣
→˓if you prefer.

For interactive use, you can have the PSF displayed as it is computed:

>>> nc.calc_psf(display=True) # will make nice plots with matplotlib.

15
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More complicated instrumental configurations are available by setting the instrument’s attributes. For instance, one
can create an instance of MIRI and configure it for coronagraphic observations, thus:

>>> miri = webbpsf.MIRI()
>>> miri.filter = 'F1065C'
>>> miri.image_mask = 'FQPM1065'
>>> miri.pupil_mask = 'MASKFQPM'
>>> miri.calc_psf('outfile.fits')

3.1.1 Input Source Spectra

WebbPSF attempts to calculate realistic weighted broadband PSFs taking into account both the source spectrum and
the instrumental spectral response.

16 Chapter 3. Using WebbPSF via the Python API
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The default source spectrum is, if pysynphot is installed, a G2V star spectrum from Castelli & Kurucz 2004. Without
pysynphot, the default is a simple flat spectrum such that the same number of photons are detected at each wavelength.

You may choose a different illuminating source spectrum by specifying a source parameter in the call to calc_psf().
The following are valid sources:

1. A pysynphot.Spectrum object. This is the best option, providing maximum ease and accuracy, but requires
the user to have pysynphot installed. In this case, the Spectrum object is combined with a pysynphot.
ObsBandpass for the selected instrument and filter to derive the effective stimulus in detected photoelectrons
versus wavelength. This is binned to the number of wavelengths set by the nlambda parameter.

2. A dictionary with elements source["wavelengths"] and source["weights"] giving the wavelengths in me-
ters and the relative weights for each. These should be numpy arrays or lists. In this case, the wavelengths and
weights are used exactly as provided, without applying the instrumental filter profile.

>>> src = {'wavelengths': [2.0e-6, 2.1e-6, 2.2e-6], 'weights': [0.3, 0.5, 0.2]}
>>> nc.calc_psf(source=src, outfile='psf_for_src.fits')

3. A tuple or list containing the numpy arrays (wavelength, weights) instead.

As a convenience, webbpsf includes a function to retrieve an appropriate pysynphot.Spectrum object for a given
stellar spectral type from the PHOENIX or Castelli & Kurucz model libraries.

>>> src = webbpsf.specFromSpectralType('G0V', catalog='phoenix')
>>> psf = miri.calc_psf(source=src)

3.1.2 Making Monochromatic PSFs

To calculate a monochromatic PSF, just use the monochromatic parameter. Wavelengths are always specified in
meters.

>>> psf = miri.calc_psf(monochromatic=9.876e-6)

3.1.3 Adjusting source position, centering, and output format

A number of non-instrument-specific calculation options can be adjusted through the options dictionary attribute on
each instrument instance. (For a complete listing of options available, consult JWInstrument.options.)

Input Source position offsets

The PSF may be shifted off-center by adjusting the offset of the stellar source. This is done in polar coordinates:

>>> instrument.options['source_offset_r'] = 0.3 # offset in arcseconds
>>> instrument.options['source_offset_theta'] = 45. # degrees counterclockwise from instrumental +Y␣
→˓in the science frame

If these options are set, the offset is applied relative to the central coordinates as defined by the output array size and
parity (described just below).

For coronagraphic modes, the coronagraph occulter is always assumed to be at the center of the output array. Therefore,
these options let you offset the source away from the coronagraph.

3.1. Usage and Examples 17
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Simulating telescope jitter

Space-based observatories don’t have to contend with the seeing limit, but imprecisions in telescope pointing can have
the effect of smearing out the PSF. To simulate this with WebbPSF, the option names are jitter and jitter_sigma.

>>> instrument.options['jitter'] = 'gaussian' # jitter model name or None
>>> instrument.options['jitter_sigma'] = 0.009 # in arcsec, default 0.007

Array sizes, star positions, and centering

Output array sizes may be specified either in units of arcseconds or pixels. For instance,

>>> mynircam = webbpsf.NIRCam()
>>> result = mynircam.calc_psf(fov_arcsec=7, oversample=2, filter='F250M')
>>> result2= mynircam.calc_psf(fov_pixels=512, oversample=2, filter='F250M')

In the latter example, you will in fact get an array which is 1024 pixels on a side: 512 physical detector pixels, times
an oversampling of 2.

By default, the PSF will be centered at the exact center of the output array. This means that if the PSF is computed on
an array with an odd number of pixels, the PSF will be centered exactly on the central pixel. If the PSF is computed
on an array with even size, it will be centered on the “crosshairs” at the intersection of the central four pixels. If one
of these is particularly desirable to you, set the parity option appropriately:

>>> instrument.options['parity'] = 'even'
>>> instrument.options['parity'] = 'odd'

Setting one of these options will ensure that a field of view specified in arcseconds is properly rounded to either odd or
even when converted from arcsec to pixels. Alternatively, you may also just set the desired number of pixels explicitly
in the call to calc_psf():

>>> instrument.calc_psf(fov_npixels=512)

Note: Please note that these parity options apply to the number of detector pixels in your simulation. If you re-
quest oversampling, then the number of pixels in the output file for an oversampled array will be fov_npixels times
oversampling. Hence, if you request an odd parity with an even oversampling of, say, 4, then you would get an array
with a total number of data pixels that is even, but that correctly represents the PSF located at the center of an odd
number of detector pixels.

Output format options for sampling

As just explained, WebbPSF can easily calculate PSFs on a finer grid than the detector’s native pixel scale. You can
select whether the output data should include this oversampled image, a copy that has instead been rebinned down to
match the detector scale, or optionally both. This is done using the options['output_mode'] parameter.

>>> nircam.options['output_mode'] = 'oversampled'
>>> psf = nircam.calc_psf() # the 'psf' variable will be an oversampled PSF, formatted as a FITS␣
→˓HDUlist
>>>
>>> nircam.options['output_mode'] = 'detector sampled'
>>> psf2 = nircam.calc_psf() # now 'psf2' will contain the result as resampled onto the detector␣
→˓scale.

(continues on next page)
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(continued from previous page)

>>>
>>> nircam.options['output_mode'] = 'both'
>>> psf3 = nircam.calc_psf() # 'psf3' will have the oversampled image as primary HDU, and
>>> # the detector-sampled image as the first image extension HDU.

Warning: The default behavior is both. Note that at some point in the future, this default is likely to change to
detector sampling. To future-proof your code, set options['output_mode'] explicitly.

3.1.4 Pixel scales, sampling, and oversampling

The derived instrument classes all know their own instrumental pixel scales. You can change the output pixel scale in
a variety of ways, as follows. See the JWInstrument.calc_psf documentation for more details.

1. Set the oversample parameter to calc_psf(). This will produce a PSF with a pixel grid this many times more
finely sampled. oversample=1 is the native detector scale, oversample=2 means divide each pixel into 2x2
finer pixels, and so forth. You can automatically obtain both the oversampled PSF and a version rebinned down
onto the detector pixel scale by setting rebin=True in the call to calc_psf:

>>> hdulist = instrument.calc_psf(oversample=2, rebin=True) # hdulist will contain a primary␣
→˓HDU with the
>>> # oversampled data, plus an image␣
→˓extension
>>> # with the PSF rebinned down to␣
→˓regular sampling.

2. For coronagraphic calculations, it is possible to set different oversampling factors at different parts of the cal-
culation. See the calc_oversample and detector_oversample parameters. This is of no use for regular
imaging calculations (in which case oversample is a synonym for detector_oversample). Specifically, the
calc_oversample keyword is used for Fourier transformation to and from the intermediate optical plane where
the occulter (coronagraph spot) is located, while detector_oversample is used for propagation to the final de-
tector. Note that the behavior of these keywords changes for coronagraphic modeling using the Semi-Analytic
Coronagraphic propagation algorithm (not fully documented yet - contact Marshall Perrin if curious).

>>> miri.calc_psf(calc_oversample=8, detector_oversample=2) # model the occulter with very fine␣
→˓pixels, then save the
>>> # data on a coarser (but still␣
→˓oversampled) scale

3. Or, if you need even more flexibility, just change the instrument.pixelscale attribute to be whatever arbitrary
scale you require.

>>> instrument.pixelscale = 0.0314159

Note that the calculations performed by WebbPSF are somewhat memory intensive, particularly for coronagraphic
observations. All arrays used internally are double-precision complex floats (16 bytes per value), and many arrays of
size (npixels * oversampling)^2 are needed (particularly if display options are turned on, since the matplotlib
graphics library makes its own copy of all arrays displayed).

Your average laptop with a couple GB of RAM will do perfectly well for most computations so long as you’re not too
ambitious with setting array size and oversampling. If you’re interested in very high fidelity simulations of large fields
(e.g. 1024x1024 pixels oversampled 8x) then we recommend a large multicore desktop with >16 GB RAM.

3.1. Usage and Examples 19
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3.1.5 PSF normalization

By default, PSFs are normalized to total intensity = 1.0 at the entrance pupil (i.e. at the JWST OTE primary). A
PSF calculated for an infinite aperture would thus have integrated intensity =1.0. A PSF calculated on any smaller
finite subarray will have some finite encircled energy less than one. For instance, at 2 microns a 10 arcsecond size
FOV will enclose about 99% of the energy of the PSF. Note that if there are any additional obscurations in the optical
system (such as coronagraph masks, spectrograph slits, etc), then the fraction of light that reaches the final focal plane
will typically be significantly less than 1, even if calculated on an arbitrarily large aperture. For instance the NIRISS
NRM mask has a throughput of about 15%, so a PSF calculated in this mode with the default normalization will have
integrated total intensity approximately 0.15 over a large FOV.

If a different normalization is desired, there are a few options that can be set in calls to calc_psf:

>>> psf = nc.calc_psf(normalize='last')

The above will normalize a PSF after the calculation, so the output (i.e. the PSF on whatever finite subarray) has total
integrated intensity = 1.0.

>>> psf = nc.calc_psf(normalize='exit_pupil')

The above will normalize a PSF at the exit pupil (i.e. last pupil plane in the optical model). This normalization takes
out the effect of any pupil obscurations such as coronagraph masks, spectrograph slits or pupil masks, the NIRISS
NRM mask, and so forth. However it still leaves in the effect of any finite FOV. In other words, PSFs calculated in this
mode will have integrated total intensity = 1.0 over an infinitely large FOV, even after the effects of any obscurations.

Note: An aside on throughputs and normalization: Note that by design WebbPSF does not track or model the absolute
throughput of any instrument. Consult the JWST Exposure Time Calculator and associated reference material if you
are interested in absolute throughputs. Instead WebbPSF simply allows normalization of output PSFs’ total intensity to
1 at either the entrance pupil, exit pupil, or final focal plane. When used to generate monochromatic PSFs for use in the
JWST ETC, the entrance pupil normalization option is selected. Therefore WebbPSF first applies the normalization to
unit flux at the primary mirror, propagates it through the optical system ignoring any reflective or transmissive losses
from mirrors or filters (since the ETC throughput curves take care of those), and calculates only the diffractive losses
from slits and stops. Any loss of light from optical stops (Lyot stops, spectrograph slits or coronagraph masks, the
NIRISS NRM mask, etc.) will thus be included in the WebbPSF calculation. Everything else (such as reflective or
transmissive losses, detector quantum efficiencies, etc., plus scaling for the specified target spectrum and brightness)
is the ETC’s job. This division of labor has been coordinated with the ETC team and ensures each factor that affects
throughput is handled by one or the other system but is not double counted in both.

To support realistic calculation of broadband PSFs however, WebbPSF does include normalized copies of the relative
spectral response functions for every filter in each instrument. These are included in the WebbPSF data distribution,
and are derived behind the scenes from the same reference database as is used for the ETC. These relative spectral
response functions are used to make a proper weighted sum of the individual monochromatic PSFs in a broadband
calculation: weighted relative to the broadband total flux of one another, but still with no implied absolute normaliza-
tion.

3.1.6 Controlling output log text

WebbPSF can output a log of calculation steps while it runs, which can be displayed to the screen and optionally saved
to a file. This is useful for verifying or debugging calculations. To turn on log display, just run

>>> webbpsf.setup_logging(filename='webbpsf.log')

The setup_logging function allows selection of the level of log detail following the standard Python logging system
(DEBUG, INFO, WARN, ERROR). To disable all printout of log messages, except for errors, set
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>>> webbpsf.setup_logging(level='ERROR')

WebbPSF remembers your chosen logging settings between invocations, so if you close and then restart python it will
automatically continue logging at the same level of detail as before. See webbpsf.setup_logging() for more details.

3.2 Advanced Usage: Output file format, OPDs, and more

This section serves as a catch-all for some more esoteric customizations and applications. See also the More Examples
page.

3.2.1 Writing out only downsampled images

Perhaps you may want to calculate the PSF using oversampling, but to save disk space you only want to write out the
PSF downsampled to detector resolution.

>>> result = inst.calc_psf(args, ...)
>>> result['DET_SAMP'].writeto(outputfilename)

Or if you really care about writing it as a primary HDU rather than an extension, replace the 2nd line with

>>> pyfits.PrimaryHDU(data=result['DET_SAMP'].data, header=result['DET_SAMP'].header).
→˓writeto(outputfilename)

3.2.2 Writing out intermediate images

Your calculation may involve intermediate pupil and image planes (in fact, it most likely does). WebbPSF /
POPPY allow you to inspect the intermediate pupil and image planes visually with the display keyword argument
to calc_psf(). Sometimes, however, you may want to save these arrays to FITS files for analysis. This is done with
the save_intermediates keyword argument to calc_psf().

The intermediate wavefront planes will be written out to FITS files in the current directory, named in the format
wavefront_plane_%03d.fits. You can additionally specify what representation of the wavefront you want saved
with the save_intermediates_what argument to calc_psf(). This can be all, parts, amplitude, phase or
complex, as defined as in poppy.Wavefront.asFITS(). The default is to write all (intensity, amplitude, and phase
as three 2D slices of a data cube).

If you pass return_intermediates=True as well, the return value of calc_psf is then psf,
intermediate_wavefronts_list rather than the usual psf.

Warning: The save_intermediates keyword argument does not work when using parallelized computation, and
WebbPSF will fail with an exception if you attempt to pass save_intermediates=True when running in parallel.
The return_intermediates option has this same restriction.

3.2.3 Providing your own OPDs or pupils from some other source

It is straight forward to configure an Instrument object to use a pupil OPD file of your own devising, by setting the
pupilopd attribute of the Instrument object:
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>>> niriss = webbpsf.NIRISS()
>>> niriss.pupilopd = "/path/to/your/OPD_file.fits"

If you have a pupil that is an array in memory but not saved on disk, you can pass it in as a fits.HDUList object :

>>> myOPD = some_function_that_returns_properly_formatted_HDUList(various, function, args...)
>>> niriss.pupilopd = myOPD

Likewise, you can set the pupil transmission file in a similar manner by setting the pupil attribute:

>>> niriss.pupil = "/path/to/your/OPD_file.fits"

Please see the documentation for poppy.FITSOpticalElement for information on the required formatting of the FITS
file. In particular, you will need to set the PUPLSCAL keyword, and OPD values must be given in units of meters.

3.2.4 Calculating Data Cubes

Sometimes it is convenient to calculate many PSFs at different wavelengths with the same instrument config. You
can do this just by iterating over calls to calc_psf, but there’s also a function to automate this: calc_datacube. For
example, here’s something loosely like the NIRSpec IFU in F290LP:

# Set up a NIRSpec instance
nrs = webbpsf.NIRSpec()
nrs.image_mask = None # No MSA for IFU mode
nl = np.linspace(2.87e-6, 5.27e-6, 6)

# Calculate PSF datacube
cube = nrs.calc_datacube(wavelengths=nl, fov_pixels=27, oversample=4)

# Display the contents of the data cube
fig, axes = plt.subplots(nrows=2, ncols=3, figsize=(10,7))
for iy in range(2):

for ix in range(3):
ax=axes[iy,ix]
i = iy*3+ix
wl = cube[0].header['WAVELN{:02d}'.format(i)]

# Note that when displaying datacubes, you have to set the "cube_slice" parameter
webbpsf.display_psf(cube, ax=ax, cube_slice=i,

title="NIRSpec, $\lambda$ = {:.3f} $\mu$m".format(wl*1e6),
vmax=.2, vmin=1e-4, ext=1, colorbar=False)

ax.xaxis.set_visible(False)
ax.yaxis.set_visible(False)
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3.2.5 Subclassing a JWInstrument to add additional functionality

Perhaps you want to modify the OPD used for a given instrument, for instance to add a defocus. You can do this by
subclassing one of the existing instrument classes to override the JWInstrument._addAdditionalOptics() function.
An OpticalSystem is basically a list so it’s straightforward to just add another optic there. In this example it’s a lens
for defocus but you could just as easily add another FITSOpticalElement instead to read in a disk file.

Note, we do this as an example here to show how to modify an instrument class by subclassing it, which can let you
add arbitrary new functionality. There’s an easier way to add defocus specifically; see below.

>>> class FGS_with_defocus(webbpsf.FGS):
>>> def __init__(self, *args, **kwargs):
>>> webbpsf.FGS.__init__(self, *args, **kwargs)
>>> # modify the following as needed to get your desired defocus
>>> self.defocus_waves = 0
>>> self.defocus_lambda = 4e-6
>>> def _addAdditionalOptics(self, optsys, *args, **kwargs):
>>> optsys = webbpsf.FGS._addAdditionalOptics(self, optsys, *args, **kwargs)
>>> lens = poppy.ThinLens(
>>> name='FGS Defocus',
>>> nwaves=self.defocus_waves,
>>> reference_wavelength=self.defocus_lambda
>>> )
>>> lens.planetype = poppy.PUPIL # tell propagation algorithm which this is
>>> optsys.planes.insert(1, lens)
>>> return optsys

(continues on next page)
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(continued from previous page)

>>>
>>> fgs2 = FGS_with_defocus()
>>> # apply 4 waves of defocus at the wavelength
>>> # defined by FGS_with_defocus.defocus_lambda
>>> fgs2.defocus_waves = 4
>>> psf = fgs2.calc_psf()
>>> webbpsf.display_psf(psf)

3.2.6 Defocusing an instrument

The instrument options dictionary also lets you specify an optional defocus amount. You can specify both the wave-
length at which it should be applied, and the number of waves of defocus (at that wavelength, specified as waves
peak-to-valley over the circumscribing circular pupil of JWST).

>>> nircam.options['defocus_waves'] = 3.2
>>> nircam.options['defocus_wavelength'] = 2.0e-6
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JWST Instrument Model Details

The following describes specific details for the various JWST instrument classes. See also the references page for
information on data sources.

One general note is that the webbpsf class interfaces do not attempt to exactly model the implementation details of all
instrument mechanisms, particularly for NIRCam and NIRISS that each have multiple wheels. The filter attribute
of a given class is used to select any and all filters, even if as a practical matter a given filter is physically installed
in a “pupil” wheel instead of a “filter” wheel. Likewise any masks that affect the aperture shape are selected via the
pupil_mask attribute even if physically an optic is in a so-called “filter” wheel.

All classes share some common attributes:

• filter which is the string name of the currently selected filter. The list of available filters is provided as the
filter_list attribute.

• image_mask which is the name of a selected image plane element such as a coronagraph mask or spectro-
graph slit, or None to indicate no such element is present. The list of available options is provided as the
image_mask_list attribute.

• pupil_mask likewise allows specification of any optic that modifies the pupil plane subsequent to the image
mask, such as a coronagraphic Lyot stop or spectrograph grating stop. The list of available options is provided
as the pupil_mask_list attribute.

• Each SI has a detector attribute that can be used to select among its multiple detectors (if more than one are
present in that SI), and a detector_position attribute which is a 2-tuple giving the pixel coordinates on that
detector for the center location in any calculated output PSF. Note that the detector_position value should
be specified using the Python (Y,X) axes order convention.

Warning: WebbPSF provides some sanity checking on user inputs, but does not strive to strictly forbid users
from trying to simulate instrument configurations that may not be achievable in practice. Users are responsible for
knowing the available modes well enough to be aware if they are trying to simulate an inconsistent or physically
impossible configuration.
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4.1 Optical Telescope Element (OTE)

The JWST Optical Telescope Element consists of the telescope optics that serve all the science instruments and the
fine guidance sensor. Most notably, this means the primary, secondary, tertiary, and fast steering mirrors. The OTE
contributes to the overall wavefront error (and therefore the aberrations in instrument PSFs) in a few ways:

• The limits of precisely manufacturing the mirrors introduce tiny high spatial frequency bumps and ripples of
optical path difference

• During commissioning, the telescope mirror segments will be aligned and phased as precisely as possible, but
small errors in the final aligned configuration will still contribute to WFE

• The WFE will vary with field position, which is inherent in the OTE optical design even if perfectly aligned

• Aberrations can be introduced by pupil shear or other misalignments between the OTE and each science instru-
ment

These effects are simulated at high fidelity in models maintained by Ball Aerospace, which in turn were used to create
the OPD map files for the JWST instruments included in WebbPSF. Specifically, WebbPSF uses information derived
from the as-built OTE optical model Revision G (for the static surface figures of each segments) and the overall
JWST optical error budget Revision W (for OTE to ISIM misalignments, WFSC residuals, stability, and budgeted
uncertainties for both the OTE and SI contributions).

JWST’s optical system has been extremely precisely engineered and assembled. Individual mirrors typically have
below 30 nm r.m.s. WFE, and the overall OTE system including alignment tolerances and dynamics is expected to
deliver wavefronts of roughly 100 to 150 nm r.m.s. WFE to each of the instruments. This corresponds to Strehl ratios
of 90% or better for wavelengths beyond 2 microns.

Further information on JWST’s predicted optical performance is available in “Status of the optical performance for
the James Webb Space Telescope”, Lightsey et al., (2014) and “Predicted JWST imaging performance”, Knight et al.
(2012).

For each science instrument, if you examine inst.opd_list (where inst is an instance of an instrument model), you
will see the filenames for a “predicted” OPD map and a “requirements” OPD map. For example:

>>> nc = webbpsf.NIRCam()
>>> nc.opd_list
['OPD_RevW_ote_for_NIRCam_predicted.fits.gz',
'OPD_RevW_ote_for_NIRCam_requirements.fits.gz']

By default, WebbPSF selects the (slightly more conservative) requirements OPD map:

>>> nc.pupilopd
'OPD_RevW_ote_for_NIRCam_requirements.fits.gz'

Performance predictions for a large active deployable space telescope are inherently probabilistic, and Monte Carlo
methods have been used to derive overall probability distributions based on the individual error budget terms. The
“predicted” OPD maps provided with WebbPSF correspond to the median values from such simulations, and provide a
reasonable approximation of current performance expectations. However, performance at such levels is not guaranteed.
The “requirements” OPD maps are more conservative, set to the slightly higher levels of residual wavefront error that
we can be confident will be achieved in practice. Both the predicted and required values contain maximal budgeted
contributions from OTE temporal drifts and dynamics (roughly 55 nm of low and mid frequency error); i.e. they
correspond to times well after a wavefront control and shortly before a next set of control moves might be issued.

To select the predicted map, simply assign it to the pupilopd attribute before calculating the PSF:

>>> nc.pupilopd = 'OPD_RevW_ote_for_NIRCam_predicted.fits.gz'
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For both the required and predicted cases, the OPD files contain 10 Monte Carlo realizations of the telescope. You can
select one of these by specifying the plane number in a tuple:

>>> nc.pupilopd = ('OPD_RevW_ote_for_NIRCam_predicted.fits.gz', 7)

Note that these represent 10 distinct, totally independent realizations of JWST and its optical error budget. They do
not represent any sort of time series or wavefront drift. The average levels of WFE from the telescope itself used in
the OPD files are as follows.

Instrument Predicted Requirements
NIRCam 90 nm rms 117 nm rms
NIRSpec 163 nm rms 188 nm rms
NIRISS 108 nm rms 145 nm rms
MIRI 204 nm rms 258 nm rms

While different OPD maps are used for each SI, these OPD maps do not include wavefront error contributions from
optics internal to the science instrument. Additional details on the SI-specific wavefront error models are given under
each instrument model section below.

4.2 NIRCam

4.2.1 Imaging

NIRCam is one of the more complicated classes in webbpsf, and has several unique selectable options to model the
two copies of NIRCam each with two channels.

The detector attribute can be used to select between any of the ten detectors, A1-A5 and B1-B5. Additional attributes
are then automatically set for channel (“short” or “long”) and module (“A” or “B”) but these cannot be set directly;
just set the desired detector and the channel and module are inferred automatically.

The choice of filter also impacts the channel selection: If you choose a long-wavelength filter such as F460M, then
the detector will automatically switch to the long-wave detector for the current channel. For example, if the detector
was previously set to A2, and the user enters nircam.filter = "F460M" then the detector will automatically change
to A5. If the user later selects nircam.filter = "F212N" then the detector will switch to A1 (and the user will need
to manually select if a different short wave detector is desired). This behavior on filter selection can be disabled by
setting nircam.auto_channel = False.

NIRCam class automatic pixelscale changes

The pixelscale will automatically toggle to the correct scale for LW or SW based on user inputs for either detector
or filter. If you set the detector to NRCA1-4 or NRCB1-4, the scale will be set for SW, otherwise for NRCA5 or
NRCB5 the pixel scale will be for LW. If you set the filter attribute to a filter in the short wave channel, the pixel
scale will be set for SW, otherwise for a filter in the long wave challen the scale will be set for LW.

The intent is that the user should in general automatically get a PSF with the appropriate pixelscale for whatever
instrument config you’re trying to simulate, with no extra effort needed by the user to switch between NIRCam’s two
channels.

Note that this behavior is not invoked for monochromatic calculations; you can’t just iterate over calc_psf calls at
different wavelengths and expect it to toggle between SW and LW at some point. The workaround is simple, just set
either the filter or detector attribute whenever you want to toggle between SW or LW channels.
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4.2.2 Coronagraph Masks

The coronagraph image-plane masks and pupil-plane Lyot masks are all included as options. These are based on the
nominal design properties as provided by the NIRCam team, not on any specific measurements of the as-built masks.
The simulations of the occulting mask fields also include the nearby neutral density squares for target acquisitions.

WebbPSF won’t prevent users from simulating configuration using a coronagraph image mask without the Lyot stop,
but that’s not something that can be done for real with NIRCam.

Note, the Lyot masks have multiple names for historical reasons: The names ‘CIRCLYOT’ and ‘WEDGELYOT’ have
been used since early in WebbPSF development, and can still be used, but the same masks can also be referred to as
“MASKRND” and “MASKSWB” or “MASKLWB”, the nomenclature that was eventually adopted for use in APT
and other JWST documentation. Both ways work and will continue to do so.

Offsets along the MASKLWB and MASKSWB masks:

Each allowable filter has its own default location along one of these masks. The appropriate offset is automatically
selected in WebbPSF based on the currently selected filter name. If you want to do something different, you can set
the bar_offset option:

>>> nc.options['bar_offset'] = 2.0 # Offsets 2 arcseconds in +X along the mask
or
>>> nc.options['bar_offset'] = 'F480M' # Use the position for F480M regardless of the currently␣
→˓selected filter

Note that just because you can simulate such arbitrary position in WebbPSF does not mean you can easily actually
achieve that pointing with the flight hardware.
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NIRCam class automatic detector position setting for coronagraphy

Each coronagraphic mask is imaged onto a specific area of a specific detector. Setting the image mask at-
tribute to a coronagraphic mask (e.g. MASKLWB or MASK335R) will automatically configure the detector and
detector_position attributes appropriately for that mask’s field point. Note, this will also invoke the automatic
pixelscale functionality to get the right scale for SW or LW, too.

Warning: Coronagraph field point WFE not yet included

The coronagraph field points are far off axis, and this comes with significant WFE added compared to the inner
portion of the NIRCam field of view. This is not yet included in WebbPSF, but is work in progress for the next
version expected in 2019.

4.2.3 Weak Lenses for Wavefront Sensing

WebbPSF includes models for the three weak lenses used for wavefront sensing, including the pairs of lenses that can
be used together simultaneously.

The convention is such that the “negative” 8 waves lens is concave, the “positive” two lenses are convex. Thus positive
weak lenses move best focus in front of the detector, or equivalently the electric field imaged on the detector becomes
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behind or beyond best focus. Negative weak lenses move best focus behind the detector, or equivalently the image on
the detector is moved closer to the OTE exit pupil than best focus.

Note that the weak lenses are in the short wave channel only; webbpsf won’t stop you from simulating a LW image
with a weak lens, but that’s not a real configuration that can be acheived with NIRCam.

4.2.4 SI WFE

(Not yet available)

The SI internal WFE measurements are distinct for each of the modules and channels. When enabled, these are added
to the final pupil of the optical train, i.e. after the coronagraphic image planes.

4.2.5 Wavelength-Dependent Focus Variations

TODO Add documentation here for the focus variations vs wavelength and how webbpsf models those.

4.3 NIRSpec

4.3.1 Imaging and spectroscopy

webbpsf models the optics of NIRSpec, mostly in imaging mode or for monochromatic PSFs that can be assembled
into spectra using other tools.

This is not a substitute for a spectrograph model, but rather a way of simulating a PSF as it would appear with NIRSpec
in imaging mode (e.g. for target acquisition). It can also be used to produce monochromatic PSFs appropriate for
spectroscopic modes, but other software must be used for assembling those monochromatic PSFs into a spectrum.

Slits: webbpsf includes models of each of the fixed slits in NIRSpec (S200A1, S1600A1, and so forth), plus a few
patterns with the MSA: (1) a single open shutter, (2) three adjacent open shutters to make a mini-slit, and (3) all
shutters open at once. Other MSA patterns could be added if requested by users.

By default the pupil_mask is set to the “NIRSpec grating” pupil mask. In this case a rectangular pupil mask 8.41x7.91
m as projected onto the primary is added to the optical system at the pupil plane after the MSA. This is an estimate
of the pupil stop imposed by the outer edge of the grating clear aperture, estimated based on optical modeling by Erin
Elliot and Marshall Perrin.

4.3.2 SI WFE

(Not yet available)

SI WFE will most likely be added to the entrance pupil, prior to the MSA image plane. This model is still under
development.

4.4 NIRISS

4.4.1 Imaging and AMI

WebbPSF models the direct imaging and nonredundant aperture masking interferometry modes of NIRISS in the usual
manner.
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Note that long wavelength filters (>2.5 microns) are used with a pupil obscuration which includes the pupil alignment
reference fixture. This is called the “CLEARP” pupil.

Based on the selected filter, webbpsf will automatically toggle the pupil_mask between “CLEARP” and the regular
clear pupil (i.e. pupil_mask = None).

4.4.2 Slitless Spectroscopy

webbpsf provides preliminary support for the single-object slitless spectroscopy (“SOSS”) mode using the GR700XD
cross-dispersed grating. Currently this includes the clipping of the pupil due to the undersized grating and its mounting
hardware, and the cylindrical lens that partially defocuses the light in one direction.

Warning: Prototype implementation - Not yet fully tested or verified.

Note that WebbPSF does not model the spectral dispersion in any of NIRISS’ slitless spectroscopy modes. For wide-
field slitless spectroscopy, this can best be simulated by using webbpsf output PSFs as input to the aXe spectroscopy
code. Contact Van Dixon at STScI for further information. For SOSS mode, contact Loic Albert at Universite de
Montreal.

The other two slitless spectroscopy grisms use the regular pupil and do not require any special support in WebbPSF;
just calculate monochromatic PSFs at the desired wavelengths and assemble them into spectra using tools such as aXe.

4.4.3 Coronagraph Masks

NIRISS includes four coronagraphic occulters, machined as features on its pick-off mirror. These were part of its
prior incarnation as TFI, and are not expected to see much use in NIRISS. However they remain a part of the physical
instrument and we retain in webbpsf the capability to simulate them.

4.4.4 SI WFE

(Not yet available)

The SI internal WFE measurements are distinct for each of the modules and channels. When enabled, these are added
to the final pupil of the optical train, i.e. after the coronagraphic image planes.

4.5 MIRI

4.5.1 Imaging

webbpsf models the MIRI imager; currently there is no specific support for MRS, however monochromatic PSFS
computed for the imager may be used as a reasonable proxy for PSF properties at the entrance to the MRS slicers.

4.5.2 Coronagraphy

webbpsf includes models for all three FQPM coronagraphs and the Lyot coronagraph. In practice, the wavelength
selection filters and the Lyot stop are co-mounted. webbpsf models this by automatically setting the pupil_mask
element to one of the coronagraph masks or the regular pupil when the filter is changed. If you want to disable this
behavior, set miri.auto_pupil = False.
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4.5.3 LRS Spectroscopy

webbpsf includes models for the LRS slit and the subsequent pupil stop on the grism in the wheels. Users should select
miri.image_mask = "LRS slit" and miri.pupil_mask = 'P750L LRS grating'. That said, the LRS simulations
have not been extensively tested yet; feedback is appreciated about any issues encountered.

4.5.4 SI WFE

(Not yet available)

The SI internal WFE measurements, when enabled, are added to the final pupil of the optical train, i.e. after the
coronagraphic image planes.

4.5.5 Minor Field-Dependent Pupil Vignetting

TODO Add documentation here of this effect and how WebbPSF models it.

A fold mirror at the MIRI Imager’s internal cold pupil is used to redirect light from the MIRI calibration sources
towards the detector, to enable flat field calibrations. For a subset of field positions, this fold mirror slightly obscures
a small portion of the pupil. This is a small effect with little practical consequence for MIRI PSFs, but WebbPSF does
model it.

4.6 FGS

The FGS class does not have any selectable optical elements (no filters or image or pupil masks of any kind). Only the
detector is selectable, between either ‘FGS1’ or ‘FGS2’.

4.6.1 SI WFE

(Not yet available)
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CHAPTER 5

WebbPSF for WFIRST

WebbPSF provides a framework for instrument PSF calculations that is easily extensible to other instruments and
observatories. The webbpsf.wfirst module was developed to enable simulation of WFIRST’s instruments, the Wide
Field Instrument (WFI) and Coronagraph Instrument (CGI).

5.1 Wide Field Instrument (WFI)

Fig. 1: Sample PSFs for the filters in the WFIRST WFI. Angular scale in arcseconds, log-scaled intensity.

The WFI model is based on the Cycle 6 instrument reference information from the WFIRST team at Goddard Space
Flight Center.

At this time, the only instrument simulated is the WFI, but that may change in the future. To work with the WFI model,
import and instantiate it as follows:

>>> import webbpsf
>>> from webbpsf import wfirst
>>> wfi = wfirst.WFI()

Usage of the WFI model class is, for the most part, just like any other WebbPSF instrument model. For help setting
things like filters, position offsets, and sampling refer back to Using WebbPSF via the Python API.

The WFI model includes a model for field dependent PSF aberrations. With as large a field of view as the WFI is
designed to cover, there will be variation in the PSF from one end of the field of view to the other. WebbPSF’s WFI
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model faithfully reproduces the field dependent aberrations calculated from the Goddard WFIRST team’s Cycle 6 WFI
design. This provides a toolkit for users to assess the impact of inter-SCA and intra-SCA PSF variations on science
cases of interest.

Quickstart IPython Notebook

This documentation is complemented by an IPython Notebook format quickstart tutorial. Downloading and run that
notebook to use the beta notebook GUI for the WFI model, and to explore code samples for common tasks interactively.

Caution: Note that unlike most JWST modes, WFIRST WFI is significantly undersampled relative to Nyquist.
Undersampled data is inherently lossy with information, and subject to aliasing. Measurements of properties such
as encircled energy, FWHM, Strehl ratio, etc cannot be done precisely on undersampled data.

In flight, we will use dithering and similar strategies to reconstruct better-sampled images. The same can be done
in simulation using WebbPSF. Only measure PSF properties such as FWHM or encircled energy on well-
sampled data. That means either simulating dithered undersampled data at multiple subpixel steps and drizzling
them back together, or else performing your measurements on oversampled calculation outputs. (I.e. in webbpsf,
set wfi.oversample=4 or more, and perform your measurements on extension 0 of the returned FITS file.)

5.1.1 Field dependence in the WFI model

Field points are specified in a WebbPSF calculation by selecting a detector and pixel coordinates within that detector.
A newly instantiated WFI model already has a default detector and position.

>>> wfi.detector
'SCA01'
>>> wfi.detector_position
(2048, 2048)

The WFI field of view is laid out as shown in the figure. To select a different detector, assign its name to the detector
attribute:

>>> wfi.detector_list
['SCA01', 'SCA02', 'SCA03', 'SCA04', 'SCA05', 'SCA06', 'SCA07', 'SCA08', 'SCA09', 'SCA10', 'SCA11',
→˓'SCA12', 'SCA13', 'SCA14', 'SCA15', 'SCA16', 'SCA17', 'SCA18']
>>> wfi.detector = 'SCA03'

The usable region of the 4096 by 4096 pixel detectors specified for the Wide Field Instrument will range from (4, 4) to
(4092, 4092), accounting for the 4 pixel wide bands of reference pixels. To change the position at which to calculate
a PSF, simply assign an (X, Y) tuple:

>>> wfi.detector_position = (4, 400)

Warning: WebbPSF will not prevent you from setting an out of range detector position, but an error will be raised
if you try to calculate a PSF with one.

>>> wfi.detector_position = (1, 1)
>>> wfi.calc_psf()
[ ... traceback omitted ... ]
RuntimeError: Attempted to get aberrations for an out-of-bounds field point
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The reference information available gives the field dependent aberrations in terms of Zernike polynomial coefficients
from 𝑍1 to 𝑍22. These coefficients were calculated for five field points on each of 18 detectors, each at 16 unique
wavelengths providing coverage from 0.76 𝜇𝑚 to 2.0 𝜇𝑚 (that is, the entire wavelength range of the WFI). WebbPSF
interpolates the coefficients in position and wavelength space to allow the user to simulate PSFs at any valid pixel
position and wavelength.

Bear in mind that the pixel position you set does not automatically set the centering of your calculated PSF. As with
other models in WebbPSF, an options dictionary key can be set to specify ‘even’ (center on crosshairs between four
pixels) or ‘odd’ (center on pixel center) parity.

>>> wfi.options['parity'] = 'even' # best case for dividing PSF core flux
>>> wfi.options['parity'] = 'odd' # worst case for PSF core flux landing in a single pixel

5.1.2 Example: Computing the PSF difference between opposite corners of the WFI
field of view

This example shows the power of WebbPSF to simulate and analyze field dependent variation in the model. About a
dozen lines of code are all that’s necessary to produce a figure showing how the PSF differs between the two extreme
edges of the instrument field of view.

>>> wfi = wfirst.WFI()
>>> wfi.filter = 'J129'
>>> wfi.detector = 'SCA09'
>>> wfi.detector_position = (4, 4)
>>> psf_sca09 = wfi.calc_psf()
>>> wfi.detector = 'SCA17'
>>> wfi.detector_position = (4092, 4092)
>>> psf_sca17 = wfi.calc_psf()
>>> fig, (ax_sca09, ax_sca17, ax_diff) = plt.subplots(1, 3, figsize=(16, 4))
>>> webbpsf.display_psf(psf_sca09, ax=ax_sca09, imagecrop=2.0, title='WFI SCA09, bottom left - J129')
>>> webbpsf.display_psf(psf_sca17, ax=ax_sca17, imagecrop=2.0, title='WFI SCA17, top right - J129')
>>> webbpsf.display_psf_difference(psf_sca09, psf_sca17, vmax=5e-3, title='(SCA09) - (SCA17)',␣
→˓imagecrop=2.0, ax=ax_diff)

Fig. 2: This figure shows oversampled PSFs in the J129 filter at two different field points, and the intensity difference
image between the two.

5.2 Coronagraph Instrument (CGI)

We have begun developing a Coronagraph Instrument (CGI) simulation module. The goal is to provide an open source
modeling package for CGI for use by the science centers and science teams, to complement the existing in-house
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optical modeling capabilities at JPL.

Currently a prototype implementation is available for the shaped pupil coronagraph modes only, for both the CGI
imager and IFS. Future releases will incorporate realistic aberrations, both static and dynamic, to produce realistic
speckle fields. We also plan to add the hybrid Lyot modes.

Warning: Current functionality is limited to the Shaped Pupil Coronagraph (SPC) observing modes, and these
modes are only simulated with static, unaberrated wavefronts, without relay optics and without DM control. The
design respresented here is an approximation to a baseline concept, and will be subject to change based on ongoing
trades studies and technology development.

A hands-on tutorial in using the CGI class is available in this Jupyter Notebook. Here we briefly summarize the key
points, but see that for more detail.

The CGI class has attributes for filter, etc., like other instrument classes, but since these masks are designed to be
used in specific combinations, a mode attribute exists that allows easy specification of all those attributes at once. For
example, setting

::
>> cgi = wfirst.CGI() >> cgi.mode=’CHARSPC_F770’

is equivalent to:

>> cgi.camera = 'IFS'
>> cgi.filter = 'F770'
>> cgi.apodizer = 'CHARSPC'
>> cgi.fpm = 'CHARSPC_F770_BOWTIE'
>> cgi.lyotstop = 'LS30D88'

There are _list attributes that tell you the allowed values for each attribute, including a mode_list for all the available
meta-modes.

Calculations are invoked similarly to any other instrument class:

>> mono_char_spc_psf = cgi.calc_psf(nlambda=1, fov_arcsec=1.6, display=True)
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CHAPTER 6

Using PSF Grids

WebbPSF includes functionality designed to work with the Photutils package to enable precise PSF-fitting photometry
and astrometry. This makes use of the GriddedPSFModel class (available in Photutils > 0.6), which implements a
version of the empirical or effective PSF (“ePSF”) modeling framework pioneered by Jay Anderson, Ivan King, and
collaborators. This approach has been highly successful with HST and other space observatories, and we expect it will
also be productive with JWST. In practice we will want to use ePSF models derived from real observations, but for
now we can make them in simulation.

The first step is to create a grid of fiducial PSFs spanning the instrument/detector of choice. This can be done using
the psf_grid() method which will output a (list of or single) photutils GriddedPSFModel object(s). Users can then
use photutils to apply interpolation to the grid to simulate a spatially dependent PSF anywhere on the instrument,
without having to perform a full PSF calculation at each location. This faster approach is critical if you’re dealing with
potentially tens of thousands of stars scattered across many megapixels of detector real estate.

Jupyter Notebook

See this Gridded PSF Library tutorial notebook for more details and example code.

6.1 Example PSF grid

PSF grid calculations are useful for visualizing changes in the PSF across instrument fields of view. Here’s one
example of that.

nrc = webbpsf.NIRCam()
nrc.filter='F212N'
nrc.detector='NRCA3'
grid = nrc.psf_grid(num_psfs=36, all_detectors=False)
webbpsf.gridded_library.display_psf_grid(grid)
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Fig. 1: An example of grid calculated across the NRCA3 detector in NIRCam. These PSFs are all very similar.
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Fig. 2: By subtracting off the average PSF, the subtle differences from point to point become clear. The PSF is sharpest
in the upper left corner of this detector.
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Using WebbPSF via the Graphical User Interface

The WebbPSF GUI provides an easy interface to much, but not all, of the functionality of WebbPSF. (Many advanced
settings in the class attributes and options structure for webbpsf.JWInstrument are not exposed in the GUI. The
programming API is also much better suited for scripting calculations.)

Attention: The GUI is mostly not actively developed any more, and is not recommended for more than basic use
cases. It’s a nice way to play around, but we encourage almost everyone to use the Python API as their primary
way of interacting with WebbPSF. The GUI may be deprecated in a future release.

7.1 Using the Graphical Interface

Once you have installed WebbPSF, you should have the launcher script webbpsfgui available. (If not, verify that the
WebbPSF installation directory is on your system $PATH.)

Alternatively, you may start the GUI from an interactive session:

>>> import matplotlib
>>> matplotlib.use('TkAgg')
>>> import webbpsf
>>> webbpsf.gui()

The main window is divided into three regions:

• The top region allows control of the source spectral type and position. (Selecting a source spectral type requires
installing the optional dependency pysynphot.)

• The central, main region allows selection of instrument and configuration of instrument options. The options
available here largely correspond to attributes of the webbpsf.JWInstrument classes.

• The lower region contains options for the PSF calculation itself such as pixel sampling and wavelengths. These
correspond to parameters of the webbpsf.JWInstrument.calc_psf() function call.

45



webbpsf Documentation, Release 0.8.0

Fig. 1: The main window of webbpsfgui when first launched.
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7.2 GUI Controls

The GUI buttons invoke actions as follows:

7.2.1 Compute PSF

This invokes a PSF calculation with the given options. Each wavelength will be displayed in turn as it is computed,
and finally the summed broadband PSF. This resulting PSF is stored in memory for use by the next three buttons.

7.2.2 Display PSF

This button will redisplay the PSF if the window has closed or something else has been displayed.

7.2.3 Display Profiles

This will display the PSF’s radial profile and encircled energy profile.
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7.2.4 Save PSF As. . .

This will invoke a standard File Save dialog box allowing you to save your new PSF to a FITS file.

7.2.5 Display Optics

This will display a graphical representation of the optical train for the current instrument configuration.
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7.2.6 More Options. . .

The ‘More Options. . . ’ button on the toolbar will bring up a window that allows you to select options controlling the
computation of the PSF (e.g. which Fourier transform algorithm is used) or display of the PSF (e.g. which color map
to use).
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7.3 Troubleshooting

Caution: Matplotlib Back End Issues

On macOS, some users have encountered problems running the GUI due to incompatibilities with Matplotlib
backends. If you see a severe error when trying to start the gui, try switching the backend to “TkAgg” rather than
the default “MacOSX”. This needs to be done immediately after starting IPython, prior to any attempt to use the
GUI, and ideally before even importing webbpsf:

import matplotlib
matplotlib.use('TkAgg')
import webbpsf

50 Chapter 7. Using WebbPSF via the Graphical User Interface

https://matplotlib.org/api/index_backend_api.html
https://matplotlib.org/api/index_backend_api.html


CHAPTER 8

More Examples

Any user of Webbpsf is invited to submit snippets of example code for sharing here.

This code is also available as a Jupyter notebook. This version of the page is kept for convenience but may be slightly
out of date in a few places.

Examples are organized by topic:

• Typical Usage Cases

• Spectroscopic PSFs, Slit and Slitless

• Coronagraphy and Complications

The notebook version of this page includes a fourth section providing examples of all the major SI modes for each of
the JWST instruments.

8.1 Typical Usage Cases

8.1.1 Displaying a PSF as an image and as an encircled energy plot

#create a NIRCam instance and calculate a PSF for F210M
nircam = webbpsf.NIRCam()
nircam.filter = 'F210M'
psf210 = nircam.calc_psf(oversample=2)

# display the PSF and plot the encircled energy
plt.subplot(1,2,1)
webbpsf.display_psf(psf210, colorbar_orientation='horizontal')
axis2 = plt.subplot(1,2,2)
webbpsf.display_ee(psf210, ax=axis2)

psf210.writeto('nircam_F210M.fits')
plt.savefig('plot_nircam_f210m.pdf')
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8.1.2 Iterating over multiple OPDs and filters

Perhaps you want to calculate PSFs for all filters of a given instrument, using all 10 available simulated OPDs:

def niriss_psfs():
niriss = webbpsf.NIRISS()

opdname = niriss.pupilopd

for i in range(10):
niriss.pupilopd = (opdname,i)
for filtname in niriss.filter_list:

niriss.filter=filtname
fov=18
outname = "PSF_NIRISS_%scen_wfe%d.fits" % (filtname, i)
psf = niriss.calc_psf(outname, nlambda=1, oversample=4, fov_arcsec=fov, rebin=True,␣

→˓display=True)

8.1.3 Create monochromatic PSFs across an instrument’s entire wavelength range

Monochromatic PSFs with steps of 0.1 micron from 5-28.3 micron.

m = webbpsf.MIRI()
m.pupilopd = 'OPD_RevW_ote_for_MIRI_requirements.fits.gz' # select an OPD

# looks inside $WEBBPSF_DATA/MIRI/OPD by default
# or you can specify a full path name.

m.options['parity'] = 'odd' # please make an output PSF with its center
# aligned to the center of a single pixel

waves = np.linspace(5.0, 28.3, 234)*1e-6 # iterate over wavelengths in meters

(continues on next page)
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(continued from previous page)

#waves = np.linspace(5.0, 28.3, 20)*1e-6 # iterate over wavelengths in meters

for iw, wavelength in enumerate(waves):
psffile = 'psf_MIRI_mono_%.1fum_opd1.fits' % (wavelength*1e6)
psf = m.calc_psf(fov_arcsec=30, oversample=4, rebin=True, monochromatic=wavelength, display=False,

outfile=psffile)
ax = plt.subplot(16,16,iw+1)
webbpsf.display_psf(psffile, ext='DET_SAMP', colorbar=False, imagecrop=8)
ax.set_title('')
ax.xaxis.set_visible(False)
ax.yaxis.set_visible(False)
ax.text(-3.5, 0, '{0:.1f}'.format(wavelength*1e6))

Click to enlarge:
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8.2 Spectroscopic PSFs, Slit and Slitless

Note that WebbPSF does not yet compute dispersed spectroscopic PSFs, but you can compute monochromatic PSFs
and combine them yourself with an appropriate dispersion model.

8.2.1 NIRSpec fixed slits

plt.figure(figsize=(8, 12))
nspec = webbpsf.NIRSpec()
nspec.image_mask = 'S200A1' # 0.2 arcsec slit

psfs = {}
for wave in [0.6e-6, 1e-6, 2e-6, 3e-6]:

psfs[wave] = nspec.calc_psf(monochromatic=wave, oversamp=4)

for i, wave in enumerate([0.6e-6, 1e-6, 2e-6, 3e-6]):
plt.subplot(1, 4, i+1)
webbpsf.display_psf(psfs[wave], colorbar=False, imagecrop=2, title='NIRSpec S200A1 at {0:.1f} $\mu m

→˓$'.format(wave*1e6))
plt.savefig('example_nirspec_slitpsf.png')

8.2.2 NIRSpec MSA

plt.figure(figsize=(8, 12))
ns = webbpsf.NIRSpec()
ns.image_mask='MSA all open'
ns.display()
plt.savefig('example_nirspec_msa_optics.png')
msapsf = ns.calc_psf(monochromatic=2e-6, oversample=8, rebin=True)
webbpsf.display_psf(msapsf, ext='DET_SAMP')
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8.2.3 MIRI LRS

miri = webbpsf.MIRI()
miri.image_mask = 'LRS slit'
miri.pupil_mask = 'P750L LRS grating'
psf = miri.calc_psf(monochromatic=6.0e-6, display=True)
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8.3 Coronagraphy and Complications

8.3.1 NIRCam coronagraphy with an offset source

nc = webbpsf.NIRCam()
nc.filter='F430M'
nc.image_mask='MASK430R'
nc.pupil_mask='CIRCLYOT'
nc.options['source_offset_r'] = 0.20 # source is 200 mas from center of coronagraph

# (note that this is MUCH larger than expected acq
# offsets. This size displacement is just for show)

nc.options['source_offset_theta'] = 45 # at a position angle of 45 deg
nc.calc_psf('coronagraphic.fits', oversample=4, clobber=True) # create highly oversampled output image

plt.figure(figsize=(12,4))
plt.subplot(1,2,1)

(continues on next page)
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(continued from previous page)

webbpsf.display_psf('coronagraphic.fits', vmin=1e-10, vmax=1e-5,
ext='OVERSAMP', title='NIRCam F430M+MASK430R, 4x oversampled', crosshairs=True)

plt.subplot(1,2,2)
webbpsf.display_psf('coronagraphic.fits', vmin=1e-10, vmax=1e-5,

ext='DET_SAMP', title='NIRCam F430M+MASK430R, detector oversampled', crosshairs=True)

plt.savefig('example_nircam_coron_resampling.png')

8.3.2 Simulate NIRCam coronagraphic acquisition images

def compute_psfs():
nc = webbpsf.NIRCam()

# acq filter, occulting mask, lyot, coords of acq ND square
sets = [('F182M', 'MASKSWB', 'WEDGELYOT', -10, 7.5),

('F182M', 'MASK210R', 'CIRCLYOT', -7.5, 7.5),
('F335M', 'MASKLWB', 'WEDGELYOT', 7.5, 7.5),
('F335M', 'MASK335R', 'CIRCLYOT', -10, 7.5)]

nlambda = 9
oversample = 2

calc_oversample=4

fov_arcsec = 25

for param in sets:
nc.filter = param[0]
nc.image_mask = param[1]
nc.pupil_mask = param[2]
source_offset_x = param[3]
source_offset_y = param[4]

source_offset_r = np.sqrt(source_offset_x**2+ source_offset_y**2)
source_offset_theta = np.arctan2(source_offset_x, source_offset_y)*180/np.pi
nc.options['source_offset_r'] = source_offset_r
nc.options['source_offset_theta'] = source_offset_theta

(continues on next page)
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filename = "PSF_NIRCam_%s_%s_%s_offset.fits" % (param[0], param[1], param[2])
result = nc.calc_psf(nlambda=nlambda,

oversample=oversample, calc_oversample=calc_oversample,
fov_arcsec=fov_arcsec, outfile=filename, display=False)

8.3.3 Iterate a calculation over all MIRI coronagraphic modes

def miri_psfs_coron():
miri = webbpsf.MIRI()

for filtwave in [1065, 1140, 1550, 2300]:

miri.filter='F%4dC' % filtwave
if filtwave<2000:

miri.image_mask='FQPM%4d' % filtwave
miri.pupil_mask='MASKFQPM'
fov=24

else:
miri.image_mask='LYOT2300'
miri.pupil_mask='MASKLYOT'
fov=30

offset_x = 0.007 # arcsec
offset_y = 0.007 # arcsec

miri.options['source_offset_r'] = np.sqrt(offset_x**2+offset_y**2) # offset in arcsec
miri.options['source_offset_theta'] = np.arctan2(-offset_x, offset_y)*180/np.pi # PA in deg

outname = "PSF_MIRI_%s_x%+05.3f_y%+05.3f.fits" % (miri.image_mask, offset_x, offset_y)
psf = miri.calc_psf(outname, oversample=4, fov_arcsec=fov, display=True)

8.3.4 Make plots of encircled energy in PSFs at various wavelengths

def miri_psfs_for_ee():
miri = webbpsf.MIRI()

opdname = miri.pupilopd

for i in range(10):
miri.pupilopd = (opdname,i)
for wave in [5.0, 7.5, 10, 14]:

fov=18

outname = "PSF_MIRI_%.1fum_wfe%d.fits" % (wave, i)
psf = miri.calc_psf(outname, monochromatic=wave*1e-6,

oversample=4, fov_arcsec=fov, rebin=True, display=True)

(continues on next page)
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def plot_ee_curves():
plt.clf()
for iw, wave in enumerate([5.0, 7.5, 10, 14]):

ees60 = []
ees51 = []
ax = plt.subplot(2,2,iw+1)
for i in range(10):

name = "PSF_MIRI_%.1fum_wfe%d.fits" % (wave, i)
webbpsf.display_ee(name, ax=ax, mark_levels=False)

eefn = webbpsf.measure_ee(name)
ees60.append(eefn(0.60))
ees51.append(eefn(0.51))

ax.text(1, 0.6, 'Mean EE inside 0.60": %.3f' % np.asarray(ees60).mean())
ax.text(1, 0.5, 'Mean EE inside 0.51": %.3f' % np.asarray(ees51).mean())

ax.set_title("Wavelength = %.1f $\mu$m" % wave)

ax.axvline(0.6, ls=":", color='k')
ax.axvline(0.51, ls=":", color='k')

plt.tight_layout()

8.3.5 Simulate coronagraphy with pupil shear, saving the wavefront intensity in the
Lyot pupil plane

This is an example of a much more complicated calculation, including code to generate publication-quality plots.

There are two functions here, one that creates a simulated PSF for a given amount of shear, and one that makes some
nice plots of it.

def miri_psf_sheared(shearx=0, sheary=0, nopds = 1, display=True, overwrite=False, \*\*kwargs):
""" Compute MIRI coronagraphic PSFs assuming pupil shear between the MIRI lyot mask and the OTE

Parameters
------------
shearx, sheary: float

Shear across the pupil expressed in percent,
i.e. shearx=3 means the coronagraph pupil is sheared by 3% of the primary.

"""
miri = webbpsf.MIRI()

miri.options['pupil_shift_x'] = shearx/100 # convert shear amount to float between 0-1
miri.options['pupil_shift_y'] = sheary/100

opdname = miri.pupilopd # save default OPD name for use in iterating over slices

filtsets = [('F1065C', 'FQPM1065', 'MASKFQPM'), ('F2300C','LYOT2300','MASKLYOT')]

fov=10

(continues on next page)
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for i in range(nopds):
miri.pupilopd = (opdname,i)
for filt, im_mask, pup_mask in filtsets:

print("Now computing OPD %d for %s, %s, %s" % (i, filt, im_mask, pup_mask))
miri.filter=filt
miri.image_mask = im_mask
miri.pupil_mask = pup_mask

outname = "PSF_MIRI_%s_wfe%d_shx%.1f_shy%.1f.fits" % (filt, i, shearx, sheary)
outname_lyot = outname.replace("PSF_", 'LYOTPLANE_')

if os.path.exists(outname) and not overwrite:
print ("File %s already exists. Skipping and continuing for now... "

" Set overwrite=True to recalculate" % outname)
return

psf, intermediates = miri.calc_psf(oversample=4, fov_arcsec=fov,
rebin=True, display=display, return_intermediates=True, \*\*kwargs)

lyot_intensity = intermediates[4]

psf.writeto(outname, clobber=True)
lyot_intensity.writeto(outname_lyot, clobber=True, includepadding=False)

def plot_sheared_psf(shearx=1.0, sheary=0, lyotmax=1e-5, psfmax = 1e-3, diffmax=10):
i = 0
filtsets = [('F1065C', 'FQPM1065', 'MASKFQPM')]#, ('F2300C','LYOT2300','MASKLYOT')]

plt.clf()
plt.subplots_adjust(left=0.02, right=0.98, wspace=0.3)
for filt, im_mask, pup_mask in filtsets:

perfectname = "PSF_MIRI_%s_wfe%d_shx%.1f_shy%.1f.fits" % (filt, i, 0,0)
perfectname_lyot = perfectname.replace("PSF_", 'LYOTPLANE_')

outname = "PSF_MIRI_%s_wfe%d_shx%.1f_shy%.1f.fits" % (filt, i, shearx, sheary)
outname_lyot = outname.replace("PSF_", 'LYOTPLANE_')

if not os.path.exists(outname):
print "File %s does not exist, skipping" % outname
return False

#psf = pyfits.open(outname)
#perfpsf = pyfits.open(perfectname)
lyot = pyfits.open(outname_lyot)
perflyot = pyfits.open(perfectname_lyot)

wzero = np.where(lyot[0].data == 0)
wzero = np.where(lyot[0].data < 1e-15)
lyot[0].data[wzero] = np.nan
wzero = np.where(perflyot[0].data == 0)
perflyot[0].data[wzero] = np.nan

(continues on next page)
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(continued from previous page)

cmap = matplotlib.cm.jet
cmap.set_bad('gray')

# plot comparison perfect case Lyot Intensity
ax = plt.subplot(231)
plt.imshow(perflyot[0].data, vmin=0, vmax=lyotmax, cmap=cmap)
plt.title("Lyot plane, no shear")
ax.yaxis.set_ticklabels("")
ax.xaxis.set_ticklabels("")

wg = np.where(np.isfinite(perflyot[0].data))
ax.set_xlabel("Residual flux = %.1f%%" % (perflyot[0].data[wg].sum()*100))

# plot shifted pupil Lyot intensity
ax = plt.subplot(234)
plt.imshow(lyot[0].data, vmin=0, vmax=lyotmax, cmap=cmap)
plt.title("Lyot plane, shear (%.1f, %.1f)" % (shearx, sheary))
ax.yaxis.set_ticklabels("")
ax.xaxis.set_ticklabels("")
wg = np.where(np.isfinite(lyot[0].data))
ax.set_xlabel("Residual flux = %.1f%%" % (lyot[0].data[wg].sum()*100))

# Radial profile plot
plt.subplot(233)

radius, profperf = webbpsf.radial_profile(perfectname, ext=1)
radius2, profshear = webbpsf.radial_profile(outname, ext=1)

# normalize all radial profiles to peak=1 for an unocculted source
radiusu, profunocc = webbpsf.radial_profile('PSF_MIRI_F1065C_wfe0_noshear_unocculted.fits',

ext=1, center=(43.3, 68.6)) # center is in pixel coords

peakunocc = profunocc.max()
profperf /= peakunocc
profshear/= peakunocc
profunocc/= peakunocc

plt.semilogy(radius, profperf, label="No shear")
plt.semilogy(radius2, profshear, label="shear (%.1f, %.1f)" % (shearx, sheary))
plt.semilogy(radiusu, profunocc, label="Unocculted", ls=":" )

plt.xlabel("Separation [arcsec]")
plt.ylabel("Relative Intensity")
plt.legend(loc='upper right')
plt.gca().set_xlim(0,6)

# plot comparison perfect case PSF - detector sampled
plt.subplot(232)
webbpsf.display_psf(perfectname, ext=1, vmax=psfmax)
plt.title("PSF, no shear")

(continues on next page)
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(continued from previous page)

# plot shifted pupil PSF - detector sampled
plt.subplot(235)
webbpsf.display_psf(outname, ext=1, vmax=psfmax)
plt.title("PSF, shear (%.1f, %1.f)" % (shearx, sheary))
plt.xlabel("Separation [arcsec]")
# difference PSf
plt.subplot(236)
webbpsf.display_psf_difference(outname, perfectname, ext1=1,

ext2=1, vmax=diffmax, vmin=-0.1, normalize_to_second=True)
plt.title('Relative PSF increase')
plt.xlabel("Separation [arcsec]")

return True
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CHAPTER 9

Overview of POPPY (Physical Optics Propagation in Python)

POPPY, which stands for Physical Optics Propagation in Python, implements an object-oriented system for modeling
physical optics propagation with diffraction, particularly for telescopic and coronagraphic imaging. (Right now only
image and pupil planes are supported; intermediate planes are a future goal.)

Note: This is an abbreviated version of the documentation for POPPY, included here as a brief summary relevant for
WebbPSF. For more comprehensive documentation for POPPY please see the full POPPY documentation

9.1 Introduction

The POPPY functionality lives under the package name poppy, which is available separately from WebbPSF and
contains general functionality for Fraunhofer domain optical simulation. WebbPSF uses POPPY under the hood to
perform calculations, and indeed POPPY began its life as part of WebbPSF.

POPPY includes a system for modeling a complete instrument (including optical propagation, synthetic photometry,
and pointing jitter), and a variety of useful utility functions for analysing and plotting PSFs, documented below.

Note: This code makes use of the python standard module logging for output information. Top-level details of the
calculation are output at level logging.INFO, while details of the propagation through each optical plane are printed
at level logging.DEBUG. See the Python logging documentation for an explanation of how to redirect the poppy
logger to the screen, a textfile, or any other log destination of your choice.

9.2 The Object-Oriented Optical Model

To model optical propagation, POPPY implements an object-oriented system for representing an optical train. There
are a variety of OpticalElement classes representing both physical elements as apertures, mirrors, and apodizers,
and also implicit operations on wavefronts, such as rotations or tilts. Each OpticalElement may be defined either
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via analytic functions (e.g. a simple circular aperture) or by numerical input FITS files (e.g. the complex JWST
aperture with appropriate per-segment WFE). A series of such OpticalElements is chained together in order in an
OpticalSystem class. That class is capable of generating Wavefronts (another class) suitable for propagation through
the desired elements (with correct array size and sampling), and then performing the optical propagation onto the final
image plane.

There is an even higher level class Instrument which adds support for selectable instrument mechanisms (such as
filter wheels, pupil stops, etc). In particular it adds support for computing via synthetic photometry the appropriate
weights for multiwavelength computations through a spectral bandpass filter, and for PSF blurring due to pointing jitter
(neither of which effects are modeled by OpticalSystem). Given a specified instrument configuration, an appropriate
OpticalSystem is generated, the appropriate wavelengths and weights are calculated based on the bandpass filter and
target source spectrum, the PSF is calculated, and optionally is then convolved with a blurring kernel due to pointing
jitter. All of the WebbPSF instruments are implemented by subclassing poppy.Instrument.

9.3 Algorithms, Approximations, and Performance

POPPY presently assumes that optical propagation can be modeled using Fraunhofer diffraction (far-field), such that
the relationship between pupil and image plane optics is given by two-dimensional Fourier transforms. Fresnel prop-
agation is not currently supported.

Two different algorithmic flavors of Fourier transforms are used in POPPY. The familiar FFT algorithm is used for
transformations between pupil and image planes in the general case. This algorithm is relatively fast (O(N log(N))) but
imposes strict constraints on the relative sizes and samplings of pupil and image plane arrays. Obtaining fine sampling
in the image plane requires very large oversized pupil plane arrays and vice versa, and image plane pixel sampling
becomes wavelength dependent.

To avoid these constraints, for transforms onto the final Detector plane, instead a Matrix Fourier Transform (MFT)
algorithm is used (See Soummer et al. 2007 Optics Express). This allows computation of the PSF directly on the
desired detector pixel scale or an arbitrarily finely subsampled version therof. For equivalent array sizes N, the MFT is
slower than the FFT (O(N^3)), but in practice the ability to freely choose a more appropriate N (and to avoid the need
for post-FFT interpolation onto a common pixel scale) more than makes up for this and the MFT is faster.

Getting Help

For help using or installing webbpsf, you can contact the STScI Help Desk, help@stsci.edu. Note that WebbPSF is
included in the Astroconda python distribution, as well as being installable via standard Python packaging tools..
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CHAPTER 10

Detailed API Reference

10.1 webbpsf Package

10.1.1 WebbPSF: Simulated Point Spread Functions for the James Webb Space
Telescope

WebbPSF produces simulated PSFs for the James Webb Space Telescope, NASA’s next flagship infrared space tele-
scope. WebbPSF can simulate images for any of the four science instruments plus the fine guidance sensor, including
both direct imaging and coronagraphic modes.

Developed by Marshall Perrin and collaborators at STScI, 2010-2018.

Documentation can be found online at https://webbpsf.readthedocs.io/

10.1.2 Functions

Instrument(name) This is just a convenience function, allowing one to ac-
cess instrument objects based on a string.

display_ee([HDUlist_or_filename, ext, . . . ]) Display Encircled Energy curve for a PSF
display_profiles([HDUlist_or_filename, ext, . . . ]) Produce two plots of PSF radial profile and encircled

energy
display_psf(HDUlist_or_filename[, ext, . . . ]) Display nicely a PSF from a given hdulist or filename
display_psf_difference([. . . ]) Display nicely the difference of two PSFs from given

files
enable_adjustable_ote(instr[, jsc]) Set up a WebbPSF instrument instance to have a modi-

fiable OTE wavefront error OPD via an OTE linear op-
tical model (LOM).

gui([preferred]) Start the WebbPSF GUI with the selected interface
measure_centroid([HDUlist_or_filename, ext, . . . ]) Measure the center of an image via center-of-mass

Continued on next page
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Table 1 – continued from previous page
measure_ee([HDUlist_or_filename, ext, . . . ]) measure encircled energy vs radius and return as an in-

terpolator
measure_fwhm(HDUlist_or_filename[, ext, . . . ]) Improved version of measuring FWHM, without any

binning of image data.
measure_radial([HDUlist_or_filename, ext, . . . ]) measure azimuthally averaged radial profile of a PSF.
measure_sharpness([HDUlist_or_filename, ext]) Compute image sharpness, the sum of pixel squares.
measure_strehl([HDUlist_or_filename, ext, . . . ]) Estimate the Strehl ratio for a PSF.
radial_profile([hdulist_or_filename, ext, . . . ]) Compute a radial profile of the image.
restart_logging([verbose]) Restart logging using the same settings as the last

WebbPSF session, as stored in the configuration system.
setup_logging([level, filename]) Allows selection of logging detail and output locations

(screen and/or file)
show_notebook_interface(instrumentname) Show Jupyter notebook widget interface
specFromSpectralType(sptype[, return_list, . . . ]) Get Pysynphot Spectrum object from a user-friendly

spectral type string.
system_diagnostic() return various helpful/informative information about the

current system.
test([package, test_path, args, plugins, . . . ]) Run the tests using py.test.
tkgui([fignum])

Instrument

webbpsf.Instrument(name)
This is just a convenience function, allowing one to access instrument objects based on a string. For instance,

>>> t = Instrument('NIRISS')

name
[string] Name of the instrument class to return. Case insensitive.

enable_adjustable_ote

webbpsf.enable_adjustable_ote(instr, jsc=False)
Set up a WebbPSF instrument instance to have a modifiable OTE wavefront error OPD via an OTE linear
optical model (LOM).

inst
[WebbPSF Instrument instance] an instance of one of the WebbPSF instrument classes.

jsc
[bool] Use ACF pupil for JSC pass and a half test configuration

a modified copy of that instrument set up to use the LOM, and the associated instance of the LOM.

gui

webbpsf.gui(preferred=’wx’)
Start the WebbPSF GUI with the selected interface

preferred
[string] either ‘wx’ or ‘ttk’ to indicate which GUI toolkit should be started.
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measure_strehl

webbpsf.measure_strehl(HDUlist_or_filename=None, ext=0, slice=0, center=None, display=True, ver-
bose=True, cache_perfect=False)

Estimate the Strehl ratio for a PSF.

This requires computing a simulated PSF with the same properties as the one under analysis.

Note that this calculation will not be very accurate unless both PSFs are well sampled, preferably several times
better than Nyquist. See Roberts et al. 2004 SPIE 5490 for a discussion of the various possible pitfalls when
calculating Strehl ratios.

WARNING: This routine attempts to infer how to calculate a perfect reference PSF based on FITS header
contents. It will likely work for simple direct imaging cases with WebbPSF but will not work (yet) for more
complicated cases such as coronagraphy, anything with image or pupil masks, etc. Code contributions to add
such cases are welcomed.

HDUlist_or_filename
[string] Either a fits.HDUList object or a filename of a FITS file on disk

ext
[int] Extension in that FITS file

slice
[int, optional] If that extension is a 3D datacube, which slice (plane) of that datacube to use

center
[tuple] center to compute around. Default is image center. If the center is on the crosshairs between four
pixels, then the mean of those four pixels is used. Otherwise, if the center is in a single pixel, then that
pixel is used.

verbose, display
[bool] control whether to print the results or display plots on screen.

cache_perfect
[bool] use caching for perfect images? greatly speeds up multiple calcs w/ same config

strehl
[float] Strehl ratio as a floating point number between 0.0 - 1.0

restart_logging

webbpsf.restart_logging(verbose=True)
Restart logging using the same settings as the last WebbPSF session, as stored in the configuration system.

verbose
[boolean] Should this function print the new logging targets to standard output?

setup_logging

webbpsf.setup_logging(level=’INFO’, filename=None)
Allows selection of logging detail and output locations (screen and/or file)

This is a convenience wrapper to Python’s built-in logging package, as used by webbpsf and poppy. By default,
this sets up log messages to be written to the screen, but the user can also request logging to a file.

Editing the WebbPSF config file to set autoconfigure_logging = True (and any of the logging settings you
wish to persist) instructs WebbPSF to apply your settings on import. (This is not done by default in case you
have configured logging yourself and don’t wish to overwrite your configuration.)
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For more advanced log handling, see the Python logging module’s own documentation.

level
[str] Name of log output to show. Defaults to ‘INFO’, set to ‘DEBUG’ for more extensive messages, or to
‘WARN’ or ‘ERROR’ for fewer.

filename
[str, optional] Filename to write the log output to. If not set, output will just be displayed on screen.
(Default: None)

>>> webbpsf.setup_logging(filename='webbpsflog.txt')

This will save all log messages to ‘webbpsflog.txt’ in the current directory. If you later start another copy of
webbpsf in a different directory, that session will also write to ‘webbpsflog.txt’ in that directory. Alternatively
you can specify a fully qualified absolute path to save all your logs to one specific file.

>>> webbpsf.setup_logging(level='WARN')

This will show only WARNING or ERROR messages on screen, and not save any logs to files at all (since the
filename argument is None)

show_notebook_interface

webbpsf.show_notebook_interface(instrumentname)
Show Jupyter notebook widget interface

instrumentname
[string] one of ‘NIRCam’,’NIRSpec’,’NIRISS’,’FGS’,’MIRI’ or ‘WFI’

system_diagnostic

webbpsf.system_diagnostic()
return various helpful/informative information about the current system. For instance versions of python &
available packages.

Mostly undocumented function. . .

test

webbpsf.test(package=None, test_path=None, args=None, plugins=None, verbose=False, pastebin=None,
remote_data=False, pep8=False, pdb=False, coverage=False, open_files=False, **kwargs)

Run the tests using py.test. A proper set of arguments is constructed and passed to pytest.main.

package
[str, optional] The name of a specific package to test, e.g. ‘io.fits’ or ‘utils’. If nothing is specified all
default tests are run.

test_path
[str, optional] Specify location to test by path. May be a single file or directory. Must be specified abso-
lutely or relative to the calling directory.

args
[str, optional] Additional arguments to be passed to pytest.main in the args keyword argument.

plugins
[list, optional] Plugins to be passed to pytest.main in the plugins keyword argument.
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verbose
[bool, optional] Convenience option to turn on verbose output from py.test. Passing True is the same as
specifying '-v' in args.

pastebin
[{‘failed’,’all’,None}, optional] Convenience option for turning on py.test pastebin output. Set to
'failed' to upload info for failed tests, or 'all' to upload info for all tests.

remote_data
[bool, optional] Controls whether to run tests marked with @remote_data. These tests use online data and
are not run by default. Set to True to run these tests.

pep8
[bool, optional] Turn on PEP8 checking via the pytest-pep8 plugin and disable normal tests. Same as
specifying '--pep8 -k pep8' in args.

pdb
[bool, optional] Turn on PDB post-mortem analysis for failing tests. Same as specifying '--pdb' in args.

coverage
[bool, optional] Generate a test coverage report. The result will be placed in the directory htmlcov.

open_files
[bool, optional] Fail when any tests leave files open. Off by default, because this adds extra run time to the
test suite. Works only on platforms with a working lsof command.

parallel
[int, optional] When provided, run the tests in parallel on the specified number of CPUs. If parallel is
negative, it will use the all the cores on the machine. Requires the pytest-xdist plugin installed. Only
available when using Astropy 0.3 or later.

kwargs
Any additional keywords passed into this function will be passed on to the astropy test runner. This allows
use of test-related functionality implemented in later versions of astropy without explicitly updating the
package template.

tkgui

webbpsf.tkgui(fignum=1)

10.1.3 Classes

CGI([mode, pixelscale, fov_arcsec, . . . ]) WFIRST Coronagraph Instrument
Conf Configuration parameters for webbpsf.
FGS() A class modeling the optics of the FGS.
JWInstrument(*args, **kwargs) Superclass for all JWST instruments
MIRI() A class modeling the optics of MIRI, the Mid-InfraRed

Instrument.
NIRCam() A class modeling the optics of NIRCam.
NIRISS([auto_pupil]) A class modeling the optics of the Near-IR Imager and

Slit Spectrograph
NIRSpec() A class modeling the optics of NIRSpec, in imaging

mode.
Continued on next page
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Table 2 – continued from previous page
UnsupportedPythonError
WFI([set_pupil_mask_on]) WFI represents to the to-be-named wide field imager for

the WFIRST mission

CGI

class webbpsf.CGI(mode=None, pixelscale=None, fov_arcsec=None, apply_static_opd=False)
Bases: webbpsf.wfirst.WFIRSTInstrument

WFIRST Coronagraph Instrument

Simulates the PSF of the WFIRST coronagraph.

Current functionality is limited to the Shaped Pupil Coronagraph (SPC) observing modes, and these modes are
only simulated with static, unaberrated wavefronts, without relay optics and without DM control. The design
respresented here is an approximation to a baseline concept, and will be subject to change based on trades studies
and technology development.

mode
[str] CGI observing mode. If not specified, the __init__ function will set this to a default mode ‘CHAR-
SPC_F660’

pixelscale
[float] Detector pixelscale. If not specified, the pixelscale will default to 0.02 arcsec for configurations
usint the IMAGER camera and 0.025 arcsec for the IFS.

fov_arcsec
[float] Field of view in arcseconds. If not specified, the field of view will default to 3.20 arcsec for the
IMAGER camera and 1.76 arcsec for the IFS.

Attributes Summary

apodizer Currently selected apodizer name
apodizer_list
camera Currently selected camera name
camera_list
detector Detector selected for simulated PSF
detector_position The pixel position in (X, Y) on the detector
filter Currently selected filter name
filter_list
fpm Currently selected FPM name
fpm_list
lyotstop Currently selected Lyot stop name
lyotstop_list
mode Currently selected mode name
mode_list Available Observation Modes

Methods Summary

print_mode_table() Print the table of observing mode options and their
associated optical configuration

74 Chapter 10. Detailed API Reference



webbpsf Documentation, Release 0.8.0

Attributes Documentation

apodizer
Currently selected apodizer name

apodizer_list = ['CHARSPC', 'DISKSPC']

camera
Currently selected camera name

camera_list = ['IMAGER', 'IFS']

detector
Detector selected for simulated PSF

Used in calculation of field-dependent aberrations. Must be selected from detectors in the detector_list
attribute.

detector_position
The pixel position in (X, Y) on the detector

filter
Currently selected filter name

filter_list = ['F660', 'F721', 'F770', 'F890']

fpm
Currently selected FPM name

fpm_list = ['CHARSPC_F660_BOWTIE', 'CHARSPC_F770_BOWTIE', 'CHARSPC_F890_BOWTIE', 'DISKSPC_F721_ANNULUS']

lyotstop
Currently selected Lyot stop name

lyotstop_list = ['LS30D88']

mode
Currently selected mode name

mode_list
Available Observation Modes

Methods Documentation

print_mode_table()
Print the table of observing mode options and their associated optical configuration

Conf

class webbpsf.Conf
Bases: astropy.config.configuration.ConfigNamespace

Configuration parameters for webbpsf.
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Attributes Summary

WEBBPSF_PATH Directory path to data files required for WebbPSF
calculations, such as OPDs and filter transmissions.

autoconfigure_logging Should WebbPSF configure logging for itself and
POPPY? This adds handlers that report calculation
progress and information

default_fov_arcsec Default field of view size, in arcseconds per side of
the square

default_output_mode Should output include the oversampled PSF, a copy
rebinned onto the integer detector spacing, or both?
Options: ‘oversampled’,’detector’,’both’

default_oversampling Default oversampling factor: number of times more
finely sampled than an integer pixel for the grid spac-
ing in the PSF calculation.

logging_filename Desired filename to save log messages to.
logging_format_file Format for lines logged to a file.
logging_format_screen Format for lines logged to the screen.
logging_level Desired logging level for WebbPSF optical calcula-

tions.

Attributes Documentation

WEBBPSF_PATH
Directory path to data files required for WebbPSF calculations, such as OPDs and filter transmissions.
This will be overridden by the environment variable $WEBBPSF_PATH, if present.

autoconfigure_logging
Should WebbPSF configure logging for itself and POPPY? This adds handlers that report calculation
progress and information

default_fov_arcsec
Default field of view size, in arcseconds per side of the square

default_output_mode
Should output include the oversampled PSF, a copy rebinned onto the integer detector spacing, or both?
Options: ‘oversampled’,’detector’,’both’

default_oversampling
Default oversampling factor: number of times more finely sampled than an integer pixel for the grid
spacing in the PSF calculation.

logging_filename
Desired filename to save log messages to.

logging_format_file
Format for lines logged to a file.

logging_format_screen
Format for lines logged to the screen.

logging_level
Desired logging level for WebbPSF optical calculations.
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FGS

class webbpsf.FGS
Bases: webbpsf.webbpsf_core.JWInstrument

A class modeling the optics of the FGS.

Not a lot to see here, folks: There are no selectable options, just a great big detector-wide bandpass and two
detectors.

JWInstrument

class webbpsf.JWInstrument(*args, **kwargs)
Bases: webbpsf.webbpsf_core.SpaceTelescopeInstrument

Superclass for all JWST instruments

telescope : name of telescope pupilopd : filename or FITS file object

include_si_wfe
[boolean (default: True)] Should SI internal WFE be included in models? Requires the presence of
si_zernikes_isim_cv3.fits in the WEBBPSF_PATH.

Attributes Summary

detector Detector selected for simulated PSF
pupilopd Filename or fits.HDUList for JWST pupil OPD.
telescope

Methods Summary

calc_psf([outfile, source, nlambda, . . . ]) Compute a PSF.
interpolate_was_opd(array, newdim) Interpolates an input 2D array to any given size.
load_was_opd(inputWasOpd[, size, save, filename]) Load and interpolate an OPD from the WAS.
psf_grid([num_psfs, all_detectors, save, . . . ]) Create a PSF library in the form of a grid of PSFs

across the detector based on the specified instrument,
filter, and detector.

set_position_from_aperture_name(aperture_name)Set the simulated center point of the array based on
a named SIAF aperture.

Attributes Documentation

detector
Detector selected for simulated PSF

Used in calculation of field-dependent aberrations. Must be selected from detectors in the detector_list
attribute.

pupilopd = None
Filename or fits.HDUList for JWST pupil OPD.

This can be either a full absolute filename, or a relative name in which case it is assumed to be within the
instrument’s data/OPDs/ directory, or an actual fits.HDUList object corresponding to such a file. If the
file contains a datacube, you may set this to a tuple (filename, slice) to select a given slice, or else the first
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slice will be used.

telescope = 'JWST'

Methods Documentation

calc_psf(outfile=None, source=None, nlambda=None, monochromatic=None, fov_arcsec=None,
fov_pixels=None, oversample=None, detector_oversample=None, fft_oversample=None,
overwrite=True, display=False, save_intermediates=False, return_intermediates=False, nor-
malize=’first’, add_distortion=True, crop_psf=True)

Compute a PSF. The result can either be written to disk (set outfile=”filename”) or else will be returned as
a FITS HDUlist object.

Output sampling may be specified in one of two ways:

1) Set oversample=. This will use that oversampling factor beyond detector pixels for output images,
and beyond Nyquist sampling for any FFTs to prior optical planes.

2) set detector_oversample= and fft_oversample=. This syntax lets you specify distinct oversam-
pling factors for intermediate and final planes.

By default, both oversampling factors are set equal to 2.

More advanced PSF computation options (pupil shifts, source positions, jitter, . . . ) may be set by config-
uring the options dictionary attribute of this class.

source
[pysynphot.SourceSpectrum or dict] specification of source input spectrum. Default is a 5700 K
sunlike star.

nlambda
[int] How many wavelengths to model for broadband? The default depends on how wide the filter is:
(5,3,1) for types (W,M,N) respectively

monochromatic
[float, optional] Setting this to a wavelength value (in meters) will compute a monochromatic PSF at
that wavelength, overriding filter and nlambda settings.

fov_arcsec
[float] field of view in arcsec. Default=5

fov_pixels
[int] field of view in pixels. This is an alternative to fov_arcsec.

outfile
[string] Filename to write. If None, then result is returned as an HDUList

oversample, detector_oversample, fft_oversample
[int] How much to oversample. Default=4. By default the same factor is used for final output pixels
and intermediate optical planes, but you may optionally use different factors if so desired.

overwrite
[bool] overwrite output FITS file if it already exists?

display
[bool] Whether to display the PSF when done or not.

save_intermediates, return_intermediates
[bool] Options for saving to disk or returning to the calling function the intermediate optical planes
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during the propagation. This is useful if you want to e.g. examine the intensity in the Lyot plane for a
coronagraphic propagation.

normalize
[string] Desired normalization for output PSFs. See doc string for OpticalSystem.calc_psf. Default is
to normalize the entrance pupil to have integrated total intensity = 1.

add_distortion
[bool] If True, will add 2 new extensions to the PSF HDUlist object. The 2nd extension will be a
distorted version of the over-sampled PSF and the 3rd extension will be a distorted version of the
detector-sampled PSF.

crop_psf
[bool] If True, when the PSF is rotated to match the detector’s rotation in the focal plane, the PSF will
be cropped so the shape of the distorted PSF will match it’s undistorted counterpart. This will only be
used for NIRCam, NIRISS, and FGS PSFs.

outfits
[fits.HDUList] The output PSF is returned as a fits.HDUlist object. If outfile is set to a valid file-
name, the output is also written to that file.

interpolate_was_opd(array, newdim)
Interpolates an input 2D array to any given size.

array: float
input array to interpolate

newdim: int
new size of the 2D square array (newdim x newdim)

newopd: new array interpolated to (newdim x newdim)

load_was_opd(inputWasOpd, size=1024, save=False, filename=’new_was_opd.fits’)
Load and interpolate an OPD from the WAS.

Ingests a WAS OPD and interpolates it to the proper size for WebbPSF.

HDUlist_or_filename
[string] Either a fits.HDUList object or a filename of a FITS file on disk

size: int, optional
Desired size of the output OPD. Default is 1024.

save: bool, optional
Save the interpolated OPD if True. Default is False.

filename
[string, optional] Filename of the output OPD, if ‘save’ is True. Default is ‘new_was_opd.fits’.

HDUlist
[string] fits.HDUList object of the interpolated OPD

psf_grid(num_psfs=16, all_detectors=True, save=False, outfile=None, overwrite=True, verbose=True,
use_detsampled_psf=False, single_psf_centered=True, **kwargs)

Create a PSF library in the form of a grid of PSFs across the detector based on the specified instrument,
filter, and detector. The output GriddedPSFModel object will contain a 3D array with axes [i, y, x] where
i is the PSF position on the detector grid and (y,x) is the 2D PSF.

num_psfs
[int] The total number of fiducial PSFs to be created and saved in the files. This number must be a
square number. Default is 16. E.g. num_psfs = 16 will create a 4x4 grid of fiducial PSFs.
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all_detectors
[bool] If True, run all detectors for the instrument. If False, run for the detector set in the instance.
Default is True

save
[bool] True/False boolean if you want to save your file. Default is False.

outfile
[str] If “save” keyword is set to True, your current file will be saved under “{outfile}_det_filt.fits”.
Default of None will save it in the current directory as: instr_det_filt_fovp#_samp#_npsf#.fits

overwrite
[bool] True/False boolean to overwrite the output file if it already exists. Default is True.

verbose
[bool] True/False boolean to print status updates. Default is True.

use_detsampled_psf
[bool] If True, the grid of PSFs returned will be detector sampled (made by binning down the
oversampled PSF). If False, the PSFs will be oversampled by the factor defined by the oversam-
ple/detector_oversample/fft_oversample keywords. Default is False. This is rarely needed - if uncer-
tain, leave this alone.

single_psf_centered
[bool] If num_psfs is set to 1, this defines where that psf is located. If True it will be the center of the
detector, if False it will be the location defined in the WebbPSF attribute detector_position (reminder
- detector_position is (x,y)). Default is True This is also rarely needed.

**kwargs
Any extra arguments to pass the WebbPSF calc_psf() method call.

gridmodel
[photutils GriddedPSFModel object] Returns a GriddedPSFModel object or a list of objects if more
than one configuration is specified (1 per instrument, detector, and filter) User also has the option to
save the grid as a fits.HDUlist object.

nir = webbpsf.NIRCam() nir.filter = “F090W” grid = nir.psf_grid(all_detectors=True, num_psfs=4)

nir = webbpsf.NIRCam() nir.filter = “F090W” nir.detector = “NRCA2” grid =
nir.psf_grid(all_detectors=False, oversample=5, fov_pixels=101)

set_position_from_aperture_name(aperture_name)
Set the simulated center point of the array based on a named SIAF aperture. This will adjust the detector
and detector position attributes.

MIRI

class webbpsf.MIRI
Bases: webbpsf.webbpsf_core.JWInstrument

A class modeling the optics of MIRI, the Mid-InfraRed Instrument.

Relevant attributes include filter, image_mask, and pupil_mask.

The pupil will auto-select appropriate values for the coronagraphic filters if the auto_pupil attribute is set True
(which is the default).
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Attributes Summary

filter Currently selected filter name (e.g.

Attributes Documentation

filter
Currently selected filter name (e.g. F200W)

NIRCam

class webbpsf.NIRCam
Bases: webbpsf.webbpsf_core.JWInstrument

A class modeling the optics of NIRCam.

Relevant attributes include filter, image_mask, and pupil_mask.

The NIRCam class is smart enough to automatically select the appropriate pixel scale for the short or long
wavelength channel based on the selected detector (NRCA1 vs NRCA5, etc), and also on whether you request a
short or long wavelength filter. The auto-selection based on filter name can be disabled, if necessary, by setting
auto_channel = False. Setting the detector name always toggles the channel regardless of auto_channel.

Note, if you use the monochromatic option for calculating PSFs, that does not invoke the automatic channel
selection. Make sure to set the correct channel prior to calculating any monochromatic PSFs.

Special Options: The ‘bar_offset’ option allows specification of an offset position along one of the coronagraph
bar occulters, in arcseconds. ` nc.image_mask = 'MASKLWB' nc.options['bar_offset'] = 3 # 3
arcseconds towards the right (narrow end on module A) `

The ‘nd_squares’ option allows toggling on and off the ND squares for TA in the simulation. Note that these of
course aren’t removable in the real instrument; this option exists solely for some simulation purposes.

Attributes Summary

LONG_WAVELENGTH_MAX
LONG_WAVELENGTH_MIN
SHORT_WAVELENGTH_MAX
SHORT_WAVELENGTH_MIN
channel
detector Detector selected for simulated PSF
filter Currently selected filter name (e.g.
module

Attributes Documentation

LONG_WAVELENGTH_MAX = 5.299999999999999e-06

LONG_WAVELENGTH_MIN = 2.35e-06

SHORT_WAVELENGTH_MAX = 2.35e-06
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SHORT_WAVELENGTH_MIN = 6e-07

channel

detector
Detector selected for simulated PSF

Used in calculation of field-dependent aberrations. Must be selected from detectors in the detector_list
attribute.

filter
Currently selected filter name (e.g. F200W)

module

NIRISS

class webbpsf.NIRISS(auto_pupil=True)
Bases: webbpsf.webbpsf_core.JWInstrument

A class modeling the optics of the Near-IR Imager and Slit Spectrograph
(formerly TFI)

Relevant attributes include image_mask, and pupil_mask.

Imaging:

WebbPSF models the direct imaging and nonredundant aperture masking modes of NIRISS in the usual manner.

Note that long wavelength filters (>2.5 microns) have a pupil which includes the pupil alignment reference. If
auto_pupil is set, the pupil will be toggled between CLEAR and CLEARP automatically depending on filter.

Spectroscopy:

Added in version 0.3 is partial support for the single-object slitless spectroscopy (“SOSS”) mode using the
GR700XD cross-dispersed grating. Currently this includes the clipping of the pupil due to the undersized
grating and its mounting hardware, and the cylindrical lens that partially defocuses the light in one direction.

Warning: Prototype implementation - Not yet fully tested or verified.

Note that WebbPSF does not model the spectral dispersion in any of NIRISS’ slitless spectroscopy modes. For
wide-field slitless spectroscopy, this can best be simulated by using webbpsf output PSFs as input to the aXe
spectroscopy code. Contact Van Dixon at STScI for further information. For SOSS mode, contact Loic Albert
at Universite de Montreal.

The other two slitless spectroscopy grisms use the regular pupil and do not require any special support in
WebbPSF.

Attributes Summary

LONG_WAVELENGTH_MAX
LONG_WAVELENGTH_MIN
SHORT_WAVELENGTH_MAX

Continued on next page
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Table 10 – continued from previous page
SHORT_WAVELENGTH_MIN
filter Currently selected filter name (e.g.

Attributes Documentation

LONG_WAVELENGTH_MAX = 5.299999999999999e-06

LONG_WAVELENGTH_MIN = 2.35e-06

SHORT_WAVELENGTH_MAX = 2.35e-06

SHORT_WAVELENGTH_MIN = 6e-07

filter
Currently selected filter name (e.g. F200W)

NIRSpec

class webbpsf.NIRSpec
Bases: webbpsf.webbpsf_core.JWInstrument

A class modeling the optics of NIRSpec, in imaging mode.

This is not a substitute for a spectrograph model, but rather a way of simulating a PSF as it would appear with
NIRSpec in imaging mode (e.g. for target acquisition). NIRSpec support is relatively simplistic compared to
the other instruments at this point.

Relevant attributes include filter. In addition to the actual filters, you may select ‘IFU’ to indicate use of the
NIRSpec IFU, in which case use the monochromatic attribute to set the simulated wavelength.

If a grating is selected in the pupil, then a rectangular pupil mask 8.41x7.91 m as projected onto the primary is
added to the optical system. This is an estimate of the pupil stop imposed by the outer edge of the grating clear
aperture, estimated based on optical modeling by Erin Elliot and Marshall Perrin.

Note: IFU to be implemented later

UnsupportedPythonError

exception webbpsf.UnsupportedPythonError

WFI

class webbpsf.WFI(set_pupil_mask_on=None)
Bases: webbpsf.wfirst.WFIRSTInstrument

WFI represents to the to-be-named wide field imager for the WFIRST mission

WARNING: This model has not yet been validated against other PSF
simulations, and uses several approximations (e.g. for mirror polishing errors, which are taken from HST).

Initiate WFI
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set_pupil_mask_on
[bool or None] Set to True or False to force using or not using the cold pupil mask, or to None for the
automatic behavior.

Attributes Summary

MASKED_PUPIL_WAVELENGTH_MAX
MASKED_PUPIL_WAVELENGTH_MIN
UNMASKED_PUPIL_WAVELENGTH_MAX
UNMASKED_PUPIL_WAVELENGTH_MIN
pupil_mask Currently selected Lyot pupil mask, or None for di-

rect imaging

Attributes Documentation

MASKED_PUPIL_WAVELENGTH_MAX = 2e-06

MASKED_PUPIL_WAVELENGTH_MIN = 1.38e-06

UNMASKED_PUPIL_WAVELENGTH_MAX = 1.454e-06

UNMASKED_PUPIL_WAVELENGTH_MIN = 7.6e-07

pupil_mask
Currently selected Lyot pupil mask, or None for direct imaging

10.1.4 Class Inheritance Diagram

CGI

WFIRSTInstrument WFIConfConfigNamespace

FGS

JWInstrument

MIRI

NIRCam

NIRISS

NIRSpec

Instrument SpaceTelescopeInstrument

UnsupportedPythonError
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Diagnostics & Troubleshooting

If something does not work right, the first place to look is the Known Issues section of the release notes. The next
place to check is the GitHub issues page, where another user may have reported the problem.

To report a new issue, you will need a free GitHub account. Alternatively, you may report the issue via email to the
project maintainers. Include code that exhibits the issue to facilitate debugging.

WebbPSF includes a helper function that will return a report with information that may be useful for troubleshooting.
An example of its usage is given below:

In [1]: import webbpsf
WebbPSF log messages of level INFO and above will be shown.
WebbPSF log outputs will be directed to the screen.

In [2]: print webbpsf.system_diagnostic()

OS: Darwin-13.4.0-x86_64-i386-64bit
Python version: 2.7.8 (default, Oct 2 2014, 13:50:25) [GCC 4.2.1 Compatible Apple LLVM 6.0 (clang-600.
→˓0.51)]
numpy version: 1.9.1
poppy version: 0.3.3.dev335
webbpsf version: 0.3rc4

tkinter version: 0.3.1
wxpython version: not found

astropy version: 0.4.2
pysynphot version: 0.9.6
pyFFTW version: 0.9.2

Floating point type information for numpy.float:
Machine parameters for float64
---------------------------------------------------------------------
precision= 15 resolution= 1.0000000000000001e-15
machep= -52 eps= 2.2204460492503131e-16
negep = -53 epsneg= 1.1102230246251565e-16

(continues on next page)
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(continued from previous page)

minexp= -1022 tiny= 2.2250738585072014e-308
maxexp= 1024 max= 1.7976931348623157e+308
nexp = 11 min= -max
---------------------------------------------------------------------

Floating point type information for numpy.complex:
Machine parameters for float64
---------------------------------------------------------------------
precision= 15 resolution= 1.0000000000000001e-15
machep= -52 eps= 2.2204460492503131e-16
negep = -53 epsneg= 1.1102230246251565e-16
minexp= -1022 tiny= 2.2250738585072014e-308
maxexp= 1024 max= 1.7976931348623157e+308
nexp = 11 min= -max
---------------------------------------------------------------------
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CHAPTER 12

Sampling Requirements for Numerical Accuracy

The purpose of this appendix is to help you decide how many wavelengths and how much oversampling is required
for your particular science application.

12.1 Key Concepts

Obtaining high accuracy and precision in PSF calculations requires treating both the multiwavelength nature of the
selected bandpass and also the details of subpixel sampling and integration onto the detector pixels.

Note: The current version of this code makes no attempt to incorporate detector effects such as pixel MTF and
interpixel capacitance. If you care about such effects, you should add them with another code.

Multiwavelength effects scale the PSF linearly with respect to wavelength. Thus the absolute scale of this effect
increases linearly with distance from the PSF center. The larger a field of view you care about, the more wavelengths
you will need to include.

Pixel sampling matters most near the core of the PSF, where the flux is changing very rapidly on small spatial scales.
The closer to the core of the PSF you care about fine structure, the more finely sampled your PSF will need to be.

12.2 Some Useful Guidance

We consider two types of measurement one might wish to make on the PSF:

1. measuring the encircled energy curve to a given precision

2. measuring individual pixel flux levels to a given precision

The latter is substantially more challenging a measurement. The below tables present the number of (oversamplings,
wavelengths) needed to achieve SNR=100 in a single pixel at a given radius (where SNR in this context is calculated
as (image-truth)/truth on a per-detector-pixel basis and then averaged in an annulus as a function of radius). This
calculation is motivated by modeling coronagraphic PSF subtraction, where we might hope to achieve 1-2 orders
of magnitude reduction in the PSF wings through PSF subtraction. Accurately simulating that process demands a

87



webbpsf Documentation, Release 0.8.0

comparable level of fidelity in our PSF models. We also present tables giving the requirements for SNR=20 in a given
pixel for less demanding modeling tasks.

Note that we do not consider here the case of trying to model the PSF core at SNR=100/pixel. If you are interested in
doing so, I believe very fine subsampling would be needed. This might be most efficiently computed using a highly
oversampled PSF for just the core, glued in to a larger image computed at lower angular resolution for the rest of the
field of view. Investigating this is left as an exercise for another day.

Because NIRSpec, NIRISS, and FGS sample the PSF relatively coarsely, they will require a higher degree of over-
sampling in simulations than NIRCam to reach a given SNR level. MIRI is fairly well-sampled.

12.3 Per-Instrument Sampling Requirements

To evaluate what levels of sampling are needed in practice, for each NIRCam and MIRI filter we first computed a
very highly oversampled image (nlambda=200, oversampling=16; field of view 5 arcsec for NIRCam and 12 arcsec
for MIRI), which we used as a “truth” image. (For practical purposes, we consider this level of sampling likely
to be sufficiently fine that it’s a good stand-in for an infinitely sampled PSF, but this is an assumption we have not
quantitatively validated. However, since there are >200 subsamples in both pixel and wavelength space, the residuals
ought to be <1/200 and thus these are sufficient for our purposes of testing SNR=100.)

These tables list the (oversampling, wavelengths) required to achive the specified SNR, in comparison with a ‘truth’
image based on simulations using oversampling = 16 (i.e. 256 subpixels per detector pixel) and nlambda=200.

Required sampling for NIRCam:

NIRCam, SNR=100
r=0.5" 1.0" 2.0" 3.0"

F070W higher! (4, 13) (4, 21) (4, 30)
F090W higher! (4, 13) (4, 21) (4, 30)
F115W higher! (4, 9) (4, 21) (4, 30)
F140M higher! (4, 9) (4, 9) (4, 13)
F150W2 higher! (4, 30) (2, 75) (2, 75)
F150W higher! (4, 9) (4, 21) (4, 21)
F162M higher! (4, 9) (4, 9) (4, 13)
F164N higher! (8, 3) (8, 3) (8, 3)
F182M higher! (4, 9) (4, 9) (4, 13)
F187N higher! (8, 1) (4, 5) (8, 3)
F200W (8, 5) (4, 9) (2, 21) (2, 30)
F210M (8, 3) (4, 5) (4, 9) (4, 9)
F212N (8, 1) (4, 3) (4, 3) (4, 13)
F225N (8, 1) (4, 3) (4, 3) (4, 5)
F250M higher! (8, 5) (4, 13) (4, 9)
F277W (8, 5) (4, 9) (4, 13) (4, 21)
F300M (8, 3) (8, 5) (4, 9) (4, 9)
F322W2 (8, 9) (4, 21) (4, 21) (4, 30)
F323N (8, 1) (8, 1) (8, 3) (8, 3)
F335M (8, 3) (8, 5) (4, 9) (4, 9)
F356W (8, 5) (4, 9) (4, 9) (4, 13)
F360M (8, 3) (8, 5) (4, 5) (4, 9)
F405N (8, 1) (8, 1) (4, 9) (8, 3)
F410M (8, 3) (8, 5) (4, 5) (4, 9)
F418N (8, 1) (8, 1) (4, 5) (8, 3)
F430M (8, 1) (8, 3) (4, 9) (4, 9)
F444W (8, 5) (4, 9) (4, 13) (2, 21)
F460M (8, 3) (8, 5) (4, 9) (4, 9)
F466N (8, 1) (8, 1) (4, 3) (4, 9)

(continues on next page)
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(continued from previous page)

F470N (8, 1) (8, 1) (4, 3) (4, 3)
F480M (8, 3) (4, 21) (4, 5) (4, 9)

NIRCam, SNR=20
r=0.5" 1.0" 2.0" 3.0"

F070W (8, 3) (2, 9) (2, 21) (2, 21)
F090W (8, 3) (2, 9) (2, 13) (2, 21)
F115W (8, 3) (2, 9) (2, 13) (2, 21)
F140M (8, 3) (2, 5) (2, 5) (2, 9)
F150W2 (8, 9) (2, 21) (1, 50) (1, 75)
F150W (8, 3) (2, 9) (2, 13) (2, 21)
F162M (8, 3) (2, 5) (2, 5) (2, 9)
F164N (8, 1) (4, 1) (2, 3) (4, 3)
F182M (8, 3) (2, 3) (2, 5) (2, 9)
F187N (8, 1) (4, 1) (2, 3) (2, 5)
F200W (4, 3) (2, 5) (1, 13) (1, 21)
F210M (4, 3) (2, 3) (2, 5) (2, 5)
F212N (4, 1) (2, 1) (2, 3) (2, 3)
F225N (4, 1) (2, 1) (2, 3) (2, 3)
F250M (8, 1) (4, 3) (2, 5) (2, 5)
F277W (4, 3) (2, 5) (2, 9) (2, 13)
F300M (4, 3) (4, 3) (2, 5) (2, 5)
F322W2 (4, 5) (2, 9) (2, 21) (2, 21)
F323N (4, 1) (4, 1) (4, 1) (4, 1)
F335M (4, 3) (4, 3) (2, 5) (2, 5)
F356W (4, 3) (2, 5) (2, 9) (2, 9)
F360M (4, 3) (4, 3) (2, 3) (2, 5)
F405N (4, 1) (4, 1) (2, 3) (2, 3)
F410M (4, 1) (4, 3) (2, 3) (2, 5)
F418N (4, 1) (4, 1) (2, 1) (4, 1)
F430M (4, 1) (4, 3) (2, 3) (2, 5)
F444W (4, 3) (2, 5) (1, 9) (1, 13)
F460M (4, 1) (2, 5) (2, 3) (2, 5)
F466N (4, 1) (4, 1) (2, 1) (2, 3)
F470N (4, 1) (2, 3) (2, 1) (2, 1)
F480M (4, 1) (2, 5) (2, 3) (2, 3)

We have not yet performed simulations for the case of NIRISS. The number of wavelengths used for each filter
is set equal to that used for NIRCam. This should certainly be adequate for the long-wavelength filters (given the
NIRISS detector and NIRCam LW are identical) but users may wish to investigate using finer sampling for the shorter
wavelength filters that are very undersampled on NIRISS.

And for MIRI:

MIRI, SNR = 100
r=1.0" 2.0" 3.5" 5.0"

F560W (4, 5) (4, 9) (4, 13) (4, 13)
F770W (4, 5) (2, 9) (2, 13) (2, 21)
F1000W (4, 3) (4, 5) (2, 9) (2, 9)
F1065C (4, 3) (4, 5) (4, 5) (2, 5)
F1130W (4, 3) (4, 5) (2, 5) (2, 5)
F1140C (4, 3) (4, 3) (4, 5) (2, 5)
F1280W (4, 3) (2, 5) (2, 9) (2, 9)
F1500W (4, 3) (2, 5) (2, 9) (2, 9)
F1550C (4, 3) (2, 3) (2, 3) (2, 5)
F1800W (2, 3) (2, 3) (2, 9) (2, 9)
F2100W (2, 3) (2, 5) (2, 9) (1, 9)

(continues on next page)
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(continued from previous page)

F2300C (2, 3) (2, 5) (1, 9) (1, 9)
F2550W (2, 3) (1, 5) (1, 9) (1, 9)

FND (2, 30) (2, 40) (2, 50) (2, 75)

MIRI, SNR=20
r=1.0" 2.0" 3.5" 5.0"

F560W (2, 3) (2, 5) (2, 9) (2, 9)
F770W (2, 3) (1, 9) (1, 9) (1, 9)

F1000W (2, 3) (1, 5) (1, 5) (1, 5)
F1065C (2, 1) (2, 3) (2, 3) (1, 3)
F1130W (2, 1) (2, 3) (1, 3) (1, 3)
F1140C (2, 1) (2, 3) (1, 3) (1, 3)
F1280W (2, 3) (1, 3) (1, 5) (1, 5)
F1500W (2, 3) (1, 3) (1, 5) (1, 5)
F1550C (2, 1) (1, 3) (1, 3) (1, 3)
F1800W (1, 3) (1, 3) (1, 5) (1, 5)
F2100W (1, 3) (1, 3) (1, 5) (1, 5)
F2300C (1, 3) (1, 3) (1, 5) (1, 5)
F2550W (1, 3) (1, 3) (1, 3) (1, 5)

FND (1, 13) (1, 21) (1, 40) (1, 50)

The defaults for MIRI are set to 9 wavelengths for all filters, except for F560W and F770W which use 13 and FND
which uses 40.

More later.
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CHAPTER 13

Optimizing FFT Performance for PSF Computations with FFTW

Optimizing numerical performance of FFTs is a very complicated subject. Just using the FFTW library is no guarantee
of optimal performance; you need to know how to configure it.

Note: The following tests were performed using the older PyFFTW3 package, and have not yet been updated for the
newer pyFFTW package. However, performance considerations are expected to be fairly similar for both packages
since the underlying FFTW library is the same.

See discussion and test results at https://github.com/spacetelescope/webbpsf/issues/10

This is probably fairly sensitive to hardware details. The following benchmarks were performed on a Mac Pro, dual
quad-core 2.66 GHz Xeon, 12 GB RAM.

• Unlike many of the array operations in numpy, the fft operation is not threaded for execution across
multiple processors. It is thus slow and inefficient.

• Numpy and Scipy no longer include FFTW, but luckily there is an independently maintained pyfftw3
module. See https://launchpad.net/pyfftw/

• Using pyfftw3 can result in a 3-4x speedup for moderately large arrays. However, there are two
significant gotchas to be aware of:

1) the pyfftw3.Plan() function has a default parameter of nthreads=1. You have to explicitly tell it to use
multiple threads if you wish to reap the rewards of multiple processors. By default with nthreads=1
it is in fact a bit slower than numpy.fft!

2) The FFTW3 documentation asserts that greater speed can be achieved by using arrays which are
aligned in memory to 16-byte boundaries. There is a fftw3.create_aligned_array() function that cre-
ated numpy arrays which have this property. While I expected using this would make the transforms
faster, in fact I see significantly better performance when using unaligned arrays. (The speed differ-
ence becomes larger as array size increases, up to 2x!) This is unexpected and not understood, so it
may vary by machine and I suggest one ought to test this on different machines to see if it is reliable.
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13.1 Planning in FFTW3

• Performing plans can take a long time, especially if you select exhaustive or patient modes:

• The default option is ‘estimate’ which turns out to be really a poor choice.

• It appears that you can get most of the planning benefit from using the ‘measure’ option.

• Curiously, the really time-consuming planning only appears to take place if you do use aligned arrays. If you
use regular unaligned arrays, then a very abbreviated planning set is performed, and yet you still appear to reap
most of the benefits of

13.2 A comparison of different FFT methods

This test involves, in each iteration, allocating a new numpy array filled with random values, passing it to a function,
FFTing it, and then returning the result. Thus it is a fairly realistic test but takes longer per iteration than some of the
other tests presented below on this page. This is noted here in way of explanation for why there are discrepant values
for how long an optimized FFT of a given size takes.

Test results:

Doing complex FFT with array size = 1024 x 1024
for numpy fft, elapsed time is: 0.094331 s
for fftw3, elapsed time is: 0.073848 s
for fftw3 threaded, elapsed time is: 0.063143 s
for fftw3 thr noalign, elapsed time is: 0.020411 s
for fftw3 thr na inplace, elapsed time is: 0.017340 s

Doing complex FFT with array size = 2048 x 2048
for numpy fft, elapsed time is: 0.390593 s
for fftw3, elapsed time is: 0.304292 s
for fftw3 threaded, elapsed time is: 0.224193 s
for fftw3 thr noalign, elapsed time is: 0.061629 s
for fftw3 thr na inplace, elapsed time is: 0.047997 s

Doing complex FFT with array size = 4096 x 4096
for numpy fft, elapsed time is: 2.190670 s
for fftw3, elapsed time is: 1.911555 s
for fftw3 threaded, elapsed time is: 1.414653 s
for fftw3 thr noalign, elapsed time is: 0.332999 s
for fftw3 thr na inplace, elapsed time is: 0.293531 s

Conclusions: It appears that the most efficient algorithm is a non-aligned in-place FFT. Therefore, this is the algorithm
adopted into POPPY.

In this case, it makes sense that avoiding the alignment is beneficial, since it avoids a memory copy of the entire array
(from regular python unaligned into the special aligned array). Another set of tests (results not shown here) indicated
that there is no gain in performance from FFTing from an unaligned input array to an aligned output array.

13.3 A test comparing all four planning methods

This test involves creating one single input array (specifically, a large circle in the central half of the array) and then
repeatedly FFTing that same array. Thus it is pretty much the best possible case and the speeds are very fast.
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For arrays of size 512x512
Building input circular aperture

that took 0.024070 s
Plan method= estimate

Array alignment True False
Planning took 0.041177 0.005638 s
Executing took 0.017639 0.017181 s

Plan method= measure
Array alignment True False
Planning took 0.328468 0.006960 s
Executing took 0.001991 0.002741 s

Plan method= patient
Array alignment True False
Planning took 39.816985 0.020944 s
Executing took 0.002081 0.002475 s

Plan method= exhaustive
Array alignment True False
Planning took 478.421909 0.090302 s
Executing took 0.004974 0.002467 s

13.4 A comparison of ‘estimate’ and ‘measure’ for different sizes

This test involves creating one single input array (specifically, a large circle in the central half of the array) and then
repeatedly FFTing that same array. Thus it is pretty much the best possible case and the speeds are very fast.

For arrays of size 1024x1024
Building input circular aperture

that took 0.120378 s
Plan method= estimate

Array alignment True False
Planning took 0.006557 0.014652 s
Executing took 0.041282 0.041586 s

Plan method= measure
Array alignment True False
Planning took 1.434870 0.015797 s
Executing took 0.008814 0.011852 s

For arrays of size 2048x2048
Building input circular aperture

that took 0.469819 s
Plan method= estimate

Array alignment True False
Planning took 0.006753 0.032270 s
Executing took 0.098976 0.098925 s

Plan method= measure
Array alignment True False
Planning took 5.347839 0.033213 s
Executing took 0.028528 0.047729 s

For arrays of size 4096x4096
Building input circular aperture

that took 2.078152 s
Plan method= estimate

Array alignment True False
Planning took 0.007102 0.056571 s

(continues on next page)
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(continued from previous page)

Executing took 0.395048 0.326832 s
Plan method= measure

Array alignment True False
Planning took 17.890278 0.057363 s
Executing took 0.126414 0.133602 s

For arrays of size 8192x8192
Building input circular aperture

that took 93.043509 s
Plan method= estimate

Array alignment True False
Planning took 0.245359 0.425931 s
Executing took 2.800093 1.426851 s

Plan method= measure
Array alignment True False
Planning took 41.203768 0.235688 s
Executing took 0.599916 0.526022 s

13.5 Caching of plans means that irunning the same script a second
time is much faster

Immediately after executing the above, I ran the same script again. Now the planning times all become essentially
negligible.

Oddly, the exection time for the largest array gets longer. I suspect this has something to do with memory or system
load.

For arrays of size 1024x1024
Building input circular aperture

that took 0.115704 s
Plan method= estimate

Array alignment True False
Planning took 0.005147 0.015813 s
Executing took 0.006883 0.011428 s

Plan method= measure
Array alignment True False
Planning took 0.009078 0.012562 s
Executing took 0.007057 0.010706 s

For arrays of size 2048x2048
Building input circular aperture

that took 0.421966 s
Plan method= estimate

Array alignment True False
Planning took 0.004888 0.032564 s
Executing took 0.026869 0.043273 s

Plan method= measure
Array alignment True False
Planning took 0.019813 0.032273 s
Executing took 0.027532 0.045452 s

For arrays of size 4096x4096
Building input circular aperture

that took 1.938918 s
(continues on next page)
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(continued from previous page)

Plan method= estimate
Array alignment True False
Planning took 0.005327 0.057813 s
Executing took 0.123481 0.131502 s

Plan method= measure
Array alignment True False
Planning took 0.030474 0.057851 s
Executing took 0.119786 0.134453 s

For arrays of size 8192x8192
Building input circular aperture

that took 78.352433 s
Plan method= estimate

Array alignment True False
Planning took 0.020330 0.325254 s
Executing took 0.593469 0.530125 s

Plan method= measure
Array alignment True False
Planning took 0.147264 0.227571 s
Executing took 4.640368 0.528359 s

13.6 The Payoff: Speed improvements in POPPY

For a monochromatic propagation through a 1024x1024 pupil, using 4x oversampling, using FFTW results in about a
3x increase in performance.

Using FFTW: FFT time elapsed: 0.838939 s
Using Numpy.fft: FFT time elapsed: 3.010586 s

This leads to substantial savings in total computation time:

Using FFTW: TIME 1.218268 s for propagating one wavelength
Using Numpy.fft: TIME 3.396681 s for propagating one wavelength

Users are encouraged to try different approaches to optimizing performance on their own machines. To enable some
rudimentary benchmarking for the FFT section of the code, set poppy.conf.enable_speed_tests=True and config-
ure your logging display to show debug messages. (i.e. webbpsf.configure_logging('debug')). Measured times
will be printed in the log stream, for instance like so:

poppy : INFO Calculating PSF with 1 wavelengths
poppy : INFO Propagating wavelength = 1e-06 meters with weight=1.00
poppy : DEBUG Creating input wavefront with wavelength=0.000001, npix=511, pixel scale=0.007828␣
→˓meters/pixel
poppy : DEBUG Wavefront and optic Optic from fits.HDUList object already at same plane type,␣
→˓no propagation needed.
poppy : DEBUG Multiplied WF by phasor for Pupil plane: Optic from fits.HDUList object
poppy : DEBUG normalizing at first plane (entrance pupil) to 1.0 total intensity
poppy : DEBUG Propagating wavefront to Image plane: -empty- (Analytic).
poppy : DEBUG conf.use_fftw is True
poppy : INFO using numpy FFT of (511, 511) array
poppy : DEBUG using numpy FFT of (511, 511) array, direction=forward
poppy : DEBUG TIME 0.051085 s for the FFT # This line
poppy : DEBUG Multiplied WF by phasor for Image plane: -empty- (Analytic)
poppy : DEBUG TIME 0.063745 s for propagating one wavelength # and this one

(continues on next page)
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(continued from previous page)

poppy : INFO Calculation completed in 0.082 s
poppy : INFO PSF Calculation completed.
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CHAPTER 14

Release Notes

14.1 Known Issues

See https://github.com/spacetelescope/webbpsf/issues for currently open issues and enhancement suggestions.

• Calculations at large radii (> 500 lambda/D ~ 30 arcsec for 2 microns) will show numerical artifacts from Fourier
aliasing and the implicit repetition of the pupil entrance aperture in the discrete Fourier transform. If you need
accurate PSF information at such large radii, please contact Marshall Perrin or Marcio Melendez for higher
resolution pupil data.

The following factors are NOT included in these simulations:

• Coronagraphic masks are assumed to be perfect (i.e. the masks exactly match their design parameters.)

• Most detector effects, such as intrapixel sensitivity variations or interpixel capacitance. There are currently no
plans to include these WebbPSF itself. Generate a subsampled PSF and use a separate detector model code
instead. The one exception is a scattering artifact in the MIRI imager detector substrate.

14.2 Road Map for Future Releases

• Continued validation and updates as needed based on further analyses of instrument and telescope hardware test
data.

• Support for the NIRSpec and MIRI IFUs may be added in a future release; level of detail is still TBD.

• Improved models for telescope WFE evolution over time.

• Possibly: separate handling of pre- and post- coronagraphic WFE in instruments, or pre- and post- NIRSpec
MSA plane WFE; pending receipt of test data and models from the instrument teams.
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14.3 Version History and Change Log

14.3.1 Version 0.8.0

2018 Dec 15

This release focused on software engineering improvements, rather than changes in any of the optical models or
reference data. (In particular, there are NO changes in the reference data files; the contents of the WebbPSF version
0.8 data zip file are identical to the reference data as distributed for version 0.7. This version of WebbPSF will work
with either of those interchangably.).

Python version support: Python 3 required

This version drops support for Python 2.7. The minimum supported version of Python is now 3.5.

New functionality:

• Added new capability to create grids of fiducial, distorted PSFs spanning a chosen instrument/detector. This
new psf_grid method is meant to be used as the first step of using the photutils package to do PSF-fitting
photometry on simulated JWST PSFs. This method will output a list of or single photutils GriddedPSFModel
object(s) which can then be read into photutils to apply interpolation to the grid and simulate a spatially depen-
dent PSF anywhere on the instrument. See this Jupyter notebook for examples. This method requires photutils
version 0.6 or higher. [#241, _, @shanosborne with inputs from @mperrin, @larrybradley, @hcferguson, and
@eteq]

Bug fixes and small changes:

• Improved the application of distortion to PSFs to allow distorted PSFs to be created when the output mode is set
to only “oversampled” or only “detector-sampled.” When either of these modes is set in the options dictionary,
the output will be an HDUList object with two extensions, where the 1st extension is the same PSF as in the 0th
extension but with distortion applied. [#229, _, @shanosborne]

• Also fixed distorted PSFs which were shifted off-center compared to their undistorted counterparts. These
distorted PSFs had always been created in the correct detector location, but the values in the array returned by
calc_psf were shifted off from the center. This bug was particularly apparent when the PSFs were set with a
location near the edge of the detector. [#219, _, @shanosborne]

• Fix FITS output from JWST OTE linear model, plus typo fixes and PEP8 improvements [#232, @laurenmari-
etta]

• Display code added for the PSF grid functionality mentioned above [#247, @mperrin]

Software and Package Infrastructure Updates:

• Removed Python 2.7 compatibility code, use of six and 2to3 packages, and Python 2 test cases on Travis (#236,
#239, @mperrin, @kjbrooks]

• Packaging re-organized for consistency with current STScI package template (#240, @robelgeda)

• Documentation template updated for consistency with current STScI docs template (#250, @robelgeda)

• Documentation added or updated for a variety of features [#248, @mperrin]

• Various smaller code cleanup and doc improvements, including code cleanup for better Python PEP8 style guide
compliance [#227, #255, @shanosborne]

• Updated to newer syntax for specifying pupil shifts of optical elements [#257, @mperrin]

• Unit tests added for defocused instruments, including the NIRCam weak lenses [#256, @mperrin]
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• Updated astropy-helpers submodule to 3.0.2 [#249, @mperrin]

• Software development repo on Github shifted to within the spacetelescope organization.

14.3.2 Version 0.7.0

2018 May 30

Note, when upgrading to this version you will need to update to the latest data files as well. This is handled automati-
cally if you use conda, otherwise you will need to download and install the data from: webbpsf-data-0.7.0.tar.gz.

Python version support: Future releases will require Python 3.

Please note, this is the final release of WebbPSF to support Python 2.7. All future releases will require Python 3.5+.
See here for more information on migrating to Python 3.

Deprecated function names will go away in next release.

This is also the final release of WebbPSF to support the older, deprecated function names with mixed case that are not
compatible with the Python PEP8 style guide (e.g. calcPSF instead of calc_psf, etc). Future versions will require
the use of the newer syntax.

General:

• Improved numerical performance in calculations using new accelerated math functions in poppy. It is highly
recommended that users install the numexpr package, which enables significant speed boosts in typical prop-
agations. numexpr is easily installable via Anaconda. Some use cases, particularly for coronagraphy or slit
spectroscopy, can also benefit from GPU acceleration. See the latest poppy release notes for more.

JWST optical model improvements:

• Models of field-dependent wavefront error are now included for all the SIs. The OPD information is derived
from the ISIM CV3 test campaign at Goddard, as described extensively in David Aronstein et al. “Science
Instrument Wavefront Error and Focus: Results Summary from the ISIM Cryogenic Vacuum Tests:”, JWST-
RPT-032131. (See also the SPIE paper version.) The measured SI wavefront errors are small, some tens of
nanometers, and are in general less than the telescope WFE at given location. This information on SI WFE is
provided to help inform modeling for what potential variations in PSFs across the field of view might look like,
in broad trends. However it should _not_ be taken as precise guarantee of the exact amplitudes or functional
form of those variations. The WFE was measured at a small handful of particular field points during CV3,
and the resulting Zernike coefficients are interpolated to produce _estimated_ wavefront maps at all other field
points across the focal planes. Density and precision of the available measurements vary substantially between
instruments. [@mperrin, with contributions from @josephoenix in prior releases, and from @robelgeda and
@JarronL for the interpolation between field points. [#121, #187]

• Added new capabilities for modeling distortions of the image planes, which cause slight deflections in the angles
of diffractive features. The result of geometric distortion is that detector pixels are not ideal square sections of
the sky; they’re slightly skewed parallelograms. (See the ACS handbook for examples of what this looks like for
Hubble PSFs) For the JWST instruments, this effect is largest for FGS, and fairly small but noticeable for the
other SIs. See this Jupyter notebook for examples of the effect on JWST PSFs. Note that the distorted PSFs are
added as additional extensions in the output FITS file, so you will need to read from extension 2 or 3 if you want
the PSF with the distortion included; extensions 0 and 1 remain consistent with prior versions. The distortion
information is taken from the Science Instrument Aperture file (SIAF) reference data maintained at STScI. As
a result the pysiaf package is a new dependency required for using webbpsf. The distortion calculations can
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add 1-3 seconds to each PSF calculation, and double the size of the output FITS files; if modeling distortion is
not needed for your use case, you can deactivate this by setting add_distortion=False in calls to calc_psf. [
#209, @shanosborne]

• Added small nonzero pupil shears for most instruments, based on measurements from the ISIM CV3 and OTIS
cryo tests, adjusted for gravity release to produce predicted on-orbit pupil shears. See JWST-RPT-028027 and
JWST-RPT-037134. For most imaging mode PSFs, this has _no_ practical effect because the SI internal pupils
are oversized to provide tolerance, and the measured shears are well below that amount. It has a small but
nonzero effect for long-wave NIRISS filters with the CLEARP pupil obscuration. The greatest effect is for
MIRI coronagraphy since MIRI’s Lyot stops were not undersized to allow for pupil shear, but even so the
impact is small for the < 1% expected shift. Note that for NIRCam, the expected pupil shear is set to precisely
zero, given the expectation that NIRCam’s steerable pickoff mirror will be used in flight to achieve precise pupil
alignment. [#212,, @shanosborne, with inputs from Melendez, Telfer, and Hartig]

• For MIRI only, added new capability for modeling blurring due to scattering of light within the MIRI imager
detector substrate itself. This acts as a cross-shaped convolution kernel, strongest at the shortest wavelengths.
See MIRI document MIRI-TN-00076-ATC for details on the relevant physics and detector calibration. This is
implemented as part of the distortion framework, though it is different physics. See this Jupyter notebook for
example output. For F560W through F1000W this is a much more obvious effect than the subtle distortions.
[#209,, @shanosborne]

• Added new capabilities for modeling mirror moves of the JWST primary segments and secondary mirror, using
a linear optical model to adjust OPDs. Added a new notebook demonstrating these capabilities. Note this code
allows simulation of arbitrary mirror motions within a simplified linear range, and relies on user judgement what
those mirror motions should be; it is not a detailed rigorous optomechanical model of the observatory. [Code by
@mperrin, with some fixes by Geda in <#185]

• All the instrument+filter relative spectral response functions have been updated to values derived from the offi-
cial validated JWST ETC reference data, using the Pandeia ETC release version 1.2.2. [@mperrin]

WFIRST optical model improvements:

• The WFI optical model has been updated to use optical data from the Cycle 7 design revision for WFI. This
includes a change in the instrument field of view layout relative to the axes, as shown here. [#184, @robelgeda]

• Added R062 filter.

• Updated pupil_mask attribute for toggling between the masked and non-masked pupils now works the same
way as that attribute does for the JWST instrument classes. Note, most users will not need to deal with this
manually as the WFI class will by default automatically select the correct pupil based on the selected filter.
[#203, @robelgeda]

Bug fixes and minor changes:

• All JWST instruments: Added new feature for importing OPD files produced with the JWST Wavefront Analysis
System software [#208, @skyhawk172]

• All JWST instruments: Fix to generalize OPD loading code to handle either compressed or uncompressed OPDs
[#173, @JarronL]

• All JWST instruments: Fix to properly load the default number of wavelengths per calculation from the filters.tsv
file, rather than defaulting to 10 wavelengths regardless. [@shanosborne])

• All JWST instrument: Fix to more correctly handle non-integer-pixel positions of the PSF when writing DET_X
and DET_Y header keywords (#205, @shanosborne]

• NIRCam and MIRI coronagraphy: Automatically set the detector coordinates and SI WFE maps based on the
location of a selected coronagraph occulter. [#181, @mperrin]

• NIRCam coronagraphy: Fix a sign error in offsets for the NIRCam coronagraph SWB occulters [#172, @mper-
rin].
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• NIRCam coronagraphy: Fix a half-percent throughput error in the round occulter masks [#206, @mperrin]

• NIRCam coronagraphy: Fix an issue with transmission of the coronagraph bars precisely along the y axis, due
to a typo [#190, @JarronL]

• NIRCam coronagraphy: New option for shifting the coronagraph masks relative to the source, rather than vice
versa. This is mostly of use for edge cases such as PSF library generation for the ETC, and is probably not of
widespread utility. [#191, @mperrin]

• NIRISS: Fix the pupil_rotation option so it works for NIRISS too, in particular for NRM/AMI. [#118,
@mperrin]

• NIRSpec: Very incomplete initial rudimentary support for the NIRSpec IFU, specifically just implementing the
field stop for the IFU aperture. [@mperrin]

• Updated to newer version of the astropy_helpers package infrastructure [@sosey]

• Various smaller code cleanup and doc improvements, including code cleanup for better Python PEP8 style guide
compliance [@mperrin, @shanosborne, @robelgeda, @douglase]

• The utils.system_diagnostic function now checks and reports on a few more things that might be useful in
diagnosing performance issues.

14.3.3 Version 0.6.0

2017 August 11

JWST optical models:

• Substantial update to the optical models for the telescope, to incorporate measurements of the as-built
optics plus the latest expectations for alignments in flight. The reference data layout has changed:
each instrument now includes only two OPD files, a predicted and a requirements OPD. Ex:
OPD_RevW_ote_for_NIRCam_predicted.fits.gz. The OPD files are now derived from measured flight mirror
surfaces (for high spatial frequencies), plus statistical models for their alignment in flight following wavefront
sensing and control (for mid and lower spatial frequencies), as described in JWST Instrument Model Details.
Each OPD file still contains 10 different realizations of the statistical part.

• The NIRISS auto_pupil feature now recognizes that the CLEAR filter is used with the GR700XD pupil mask
[#151]

• Correctly convert wavelengths to microns when computing NIRISS ZnS index of refraction [#149]

• Aperture definitions now come from a copy of the SIAF bundled in jwxml rather than in the WebbPSF reference
data.

• An alpha version of a linear optical model for adjusting OPDs is now provided for power-users, but currently
unsupported and not documented.

WFIRST optical models:

• Addition of a model for the WFIRST CGI (Coronagraph Instrument) shaped pupil coronagraph by @neilzim
[#154]

General:

• Jitter is now enabled by default (approximated by convolution with 0.007 arcsec FWHM Gaussian)

• Source offsets can now be specified as source_offset_x and source_offset_y in instrument.
options (in addition to the existing instrument.options[‘source_offset_r’] and instrument.
options[‘source_offset_theta’])
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• The Astropy Helpers have been updated to v2.0.1 to fix various install-time issues.

14.3.4 Version 0.5.1

Released 2016 November 2. Bug fix release to solve some issues that manifested for AstroConda users.

• Fixed a few missed version number->0.5.0 edits in install docs

• Updated install instructions for Ureka->Astroconda change

• Clarified release instructions for data packages

• Fixed ConfigParser import in setup.py

• Documented PSF normalization options better. (#112)

• Updated Travis-CI config, consistent with poppy#187

• Made a display tweak for the primary V2V3 annotation

• Removed redundant calcPSF in favor of just using the superclass calc_psf (#132)

• Updated measure_strehl to turn off SI WFE for perfect PSF calcs

• Enforced Python 3.0+ compliance on code with __future__ imports

• Used six.string_types for Python 3.x compliance

• Add version specs to dependencies in setup.py

• Made jwxml a dependency in setup.py

14.3.5 Version 0.5.0

Released 2016 June 10. Various updates to instrument properties, improved documentation, and overhaul of internals
in preparation for measured WFE data on JWST SIs.

JWST updates:

• New documentation on JWST Instrument Model Details

• Updated all JWST SI pixel scales to latest measured values from ISIM CV3 and STScI Science Instruments
Aperture File.

• Add coordinate inversion to get the correct (inverted) orientation of the OTE exit pupil relative to the ISIM focal
plane. This will show up as an extra intermediate optical plane in all PSF calculations from this point, with the
OTE pupil obscuration flipped upside down in orientation relative to the entrance pupil.

– As a consequence of this, many optical planes displayed will now look “upside down” relative to prior
versions of WebbPSF. This affects all coronagraphic Lyot masks for instance, the NIRISS CLEARP and
NRM pupils, etc. This is as intended, and reflects the actual orientation of those optics in the internal pupil
planes relative to a detector image that has been oriented to have +V3 up and +V2 left (e.g. ‘SCI’ frame
orientation on the sky, with north up and east left if the position angle is zero).

• Added software infrastructure for using measured instrument WFE from ISIM cryo-tests - however the data
files are not yet ready and approved. This functionality will be fully activated in a near-future release (later this
summer).

• Added attributes for detector selection and pixel positions to all SIs, backed with latest science instrument
aperture file mapping between detector pixels and angular positions on the JWST focal plane.

• Improved automatic toggling based on selected filter of instrument properties such as NIRCam short/long chan-
nel and pixel scales, and NIRISS and MIRI pupil masks.
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• Thanks to Kyle van Gorkom, Anand Sivaramakrishnan, John Stansberry, Colin Cox, Randal Telfer, and George
Hartig for assisting with information and data to support these updates.

WFIRST updates:

• Updated to GSFC Cycle 6 modeling results for WFI.

• Some behind-the-scenes refactoring to implementation details for field dependent WFE to support code sharing
between the JWST and WFIRST classes.

• Thanks to Alden Jurling for assisting with information and clarifications on the Cycle 6 models.

General:

• New Python PEP8 style guide compliant names have been added for most function calls, e.g. calc_psf instead
of calcPSF, display_psf instead of display_PSF and so forth. For now these are synonymous and both forms
will work. The new styling is preferred and at some future point (but not soon!) the older syntax may be
removed.

14.3.6 Version 0.4.1

Released 2016 April 04. Mostly minor bug fixes, plus some updates to better match orientations of output files.

• Fix an bug that ignored the rotation of the MIRI coronagraph occulters, introduced by changes in poppy 0.4.0;
(#91; @kvangorkom, @josephoenix, @mperrin) and also flip the sign of that rotation from 4.5 degrees counter-
clockwise to 4.5 clockwise, to match the actual hardware (#90; @kvangorkom, @josephoenix, @mperrin)

• Also flip orientations of some NIRCam coronagraphic masks and improve modeling of NIRCam coronagraph
ND squares and occulter bar mounting hardware (#85; @mperrin); and remove two obsolete filter data files that
don’t correspond to any actual filters in NIRCam.

• Relocate measure_strehl function code into webbpsf (#88; Kathryn St.Laurent, @josephoenix, @mperrin)

• Other minor bug fixes and improved error catching (#87; @mperrin) (#95; @mperrin) (#98; @josephoenix)
(#99; @mperrin)

• Better document how to make monochromatic PSFs (#92; @mperrin) and fix broken link in docs (#96;
@josephoenix).

14.3.7 Version 0.4.0

Released 2015 November 20

• WFIRST WFI support added:

– including all WFI filters and filter-dependent pupil masks.

– including field dependence based on GSFC Cycle 5 modeling (#75, @josephoenix)

– including initial/prototype GUI interface based on Jupyter/IPython notebook widgets (#79, @josephoenix)

• Updated filter transmission files for MIRI (based on Glasse et al. 2015 PASP) and NIRISS (based on flight filter
measurement data provided by Loic Albert). (#66, #78; @mperrin)

• Added utility to check for appropriate version of the data files and request an update if necessary (#76,
@josephoenix)

• Some documentation updates, including new documentation for the WFIRST functionality (@josephoenix,
@mperrin)

• Bug fixes for minor issues involving OPD file units (#74, @josephoenix), cleaner logging output, and some
Python 3 compatibility issues.
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Note: When updating to version 0.4 you will need to also update your WebbPSF data files to the latest version as
well.

14.3.8 Version 0.3.3

Released July 1, 2015

• Python 3 compatibility added. All tests pass on Python 3.4. (#2)

• Fixed an issue that would prevent users from adding defocus to PSF calculations

• WebbPSF no longer attempts to display a welcome message on new installs; that idea proved to be less helpful
than originally expected.

• Added a CLEAR filter option for NIRISS, since the corresponding clear position is actually in the filter wheel
rather than the pupil mask wheel. Rather than an actual filter, the profile for CLEAR is 1.0 between 0.6 microns
and 5.0 microns per the stated limits of the detector, and 0.0 everywhere else. (#64)

• Multi-wavelength calculations across a filter were not choosing a sensible number of wavelengths from the
tables included in webbpsf-data. (#68)

14.3.9 Version 0.3.2

Released February 23, 2015

This is a bug-fix release to address an issue that rendered the GUI unusable. (See #55.) API usage was unaffected.

(Ask not what happened to 0.3.1.)

14.3.10 Version 0.3.0

Released 2015 February

This is a major release of WebbPSF, with several additions to the optical models (particularly for slit and slitless
spectroscopy), and extensive software improvements and under-the-hood infrastructure code updates. Many default
settings can now be customized by a text configuration file in your home directory.

Updates to the optical models:

• Initial support for spectroscopy: NIRSpec fixed slit and some MSA spectroscopy, MIRI LRS spectroscopy (for
both slit and slitless modes), and NIRISS single-object slitless spectroscopy. To model one of these modes, select
the desired image plane stop (if any) plus the pupil plane stop for the grating. WebbPSF does not yet include
any model for the spectral dispersion of the prisms, so you will want to perform monochromatic calculations for
the desired wavelengths, and coadd the results together yourself into a spectrum appropriately. For example:

>> nirspec.image_mask = 'S200A1'
>> nirspec.pupil_mask = 'NIRSpec grating'
>> monopsf = nirspec.calcPSF(monochromatic=3e-6, fov_arcsec=3)

>> miri.image_mask = 'LRS slit'
>> miri.pupil_mask = 'LRS grating'
>> miripsf = miri.calcPSF(monochromatic=10e-6)

>> niriss.pupil_mask = 'GR700XD'
>> monopsf = niriss.calcPSF(monochromatic=1.5e-6, oversample=4)
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In fact the NIRSpec class now automatically defaults to having the NIRSpec grating pupil stop as the selected
pupil mask, since that’s always in the beam. For MIRI you must explicitly select the ‘LRS grating’ pupil mask,
and may select the ‘LRS slit’ image stop. For NIRISS you must select the ‘GR700XD’ grating as the pupil
mask, though of course there is no slit for this one.

Please note This is new/experimental code and these models have not been validated in detail against instrument
hardware performance yet. Use with appropriate caution, and we encourage users and members of the instru-
ment teams to provide input on how this functionality can be further improved. Note also that MIRI MRS and
NIRSpec IFU are still unsupported.

Thanks to Loic Albert (U de Montreal) and Anand Sivaramakrishnan for data and many useful discussions
on NIRISS SOSS. Thanks to Klaus Pontoppidan for proposing the NIRSpec and MIRI support and useful
discussions. Thanks to Erin Elliott for researching the NIRSpec grating wheel pupil stop geometry, and Charles
Lajoie for information on the MIRI LRS pupil stop.

• Added NIRISS CLEARP pupil mask; this includes the obscuration from the pupil alignment reference. Given
the pupil wheel layout, this unavoidably must be in the beam for any NIRISS long-wave PSFs, and WebbPSF
will automatically configure it in the necessary cases. Thanks to Anand Sivaramakrishnan.

• Minor bug fix to weak lens code for NIRCam, which previously had an incorrect scaling factor. Weak lens
defocus values updated to the as-built rather than ideal values (which differ by 3%, but the as built values are
very well calibrated).

• Added defocus option to all instruments, which can be used to simulate either internal focus mechanism moves
or telescope defocus during MIMF. For example, set

>> nircam.options['defocus_waves']=3
>> nircam.options['defocus_wavelength']=2.0e-6

to simulate 3 waves of defocus at 2 microns, equivalently 6 microns phase delay peak-to-valley in the wavefront.

• Added new option to offset intermediate pupils (e.g. coronagraphic Lyot stops, spectrograph prisms/grisms, etc)
in rotation as well as in centering:

>> niriss.options['pupil_rotation'] = 2 # degrees counterclockwise

• Added support for rectangular subarray calculations. You can invoke these by setting fov_pixels or fov_arcsec
with a 2-element iterable:

>> nc = webbpsf.NIRCam()
>> nc.calcPSF('F212N', fov_arcsec=[3,6])
>> nc.calcPSF('F187N', fov_pixels=(300,100) )

Those two elements give the desired field size as (Y,X) following the usual Python axis order convention. This
is motivated in particular by the rectangular subarrays used in some spectroscopic modes.

Other Software Updates & Enhancements:

• Required Python modules updated, now with dependency on astropy:

– astropy.io.fits replaces pyfits for FITS I/O.

– astropy.io.ascii replaces asciitable for ASCII table I/O.

– atpy is no longer required.

– New astropy.config configuration system is used for persistent settings. This includes saving accumu-
lated FFTW ‘wisdom’ so that future FFT-based calculations will begin more rapidly.

– lxml now required for XML parsing of certain config files
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– psutil strongly recommended for cross-platform detection of available free RAM to enable better paral-
lelization.

• Improved packaging infrastructure. Thanks to Christine Slocum, Erik Bray, Mark Sienkiewicz, Michael Droet-
boom, and the developers of the Astropy affiliated package template. Thanks in particular to Christine Slocum
for integration into the STScI SSB software distribution.

• Improvements to parallelization code. Better documentation for parallelization. PyFFTW3 replaced with
pyFFTW for optimized FFTs (yes, those are two entirely different packages).

• Alternate GUI using the wxpython widget toolkit in place of the older/less functional Tkinter tool kit. Thanks to
Klaus Pontoppidan for useful advice in wxpython. This should offer better cross-platform support and improved
long term extensibility. The existing Tkinter GUI remains in place as well.

– The calculation options dialog box now has an option to toggle between monochromatic and broadband
calculations. In monochromatic mode, the “# of wavelengths” field is replaced by a “wavelength in mi-
crons” field.

– There is also an option to toggle the field of view size between units of arcseconds and pixels.

– Log messages giving details of calculations are now displayed in a window as part of the GUI as well.

– The wx gui supports rectangular fields of view. Simply enter 2 elements separated by a comma in the
‘Field of view’ text box. As a convenience, these are interpreted as (X,Y) sizes. (Note that this is opposite
of the convention used in the programming interface noted above; this is potentially confusing but seems a
reasonable compromise for users of the webbpsf GUI who do not care to think about Python conventions
in axis ordering. Comments on this topic are welcome.)

• Improved configuration settings system. Many settings such as default oversampling, default field of view size,
and output file format can now be set in a configuration file for persistence between sessions. So if you always
want e.g. 8x oversampling, you can now make that the default. An example configuration file with default values
will be created automatically the first time you run webbpsf now, including informative comments describing
possible settings. This file will be in your astropy config directory, typically something like “~/.astropy/config”.

– New ‘Preferences’ dialog allows changing these persistent defaults through the GUI.

• New function webbpsf.setup_logging() adds some more user-friendliness to the underlying python logging sys-
tem. This includes persistent log settings between sessions. See updated documentation in the webbpsf page.

• The first time it is invoked on a computer, WebbPSF will display a welcome message providing some informa-
tion of use to new users. This includes checking whether the requisite data files have been installed properly,
and alerting users to the location of the configuration file, among other things.

• Refactoring of instrument class and rebalancing where the lines between WebbPSF and POPPY had been blurry.

• Some bugfixes in the example code. Thanks to Diane Karakla, Anand Sivaramakrishnan, Schuyler Wolff.

• Various updates & enhancements to this documentation. More extensive documentation for POPPY now avail-
able as well. Doc theme derived from astropy.

• Improved unit test suite and test coverage. Integration with Travis CI for continuous testing: https://travis-ci.
org/mperrin/webbpsf

• Updated to astropy package helpers framework 0.4.4

14.3.11 Version 0.2.8

Released May 18, 2012

• Repaired functionality for saving intermediate opticals planes
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• Coronagraph pupil shear shifts now use scipy.ndimage.shift instead of numpy.roll to avoid wrapping pixels
around the edge of the array.

• Significant internal code reorganizations and cleanup:

– switched package building to use setuptools instead of distutils/stsci_distutils_hack

– poppy now installed as a separate package to more easily allow direct use.

– new Instrument class in poppy provides much of the functionality previously in JWInstrument, to make
it easier to model generic non-JWST instruments using this code.

– Better packaging in general, with more attention to public/private API consistency

– Built-in test suite available via python setup.py test

• Minor fix to MIRI ND filter transmission curve (Note: MIRI ND data is available on internal STScI data
ditribution only)

• Binset now specified when integrating across bandpasses in pysynphoteliminating a previous warning message
for that calculation.

• Stellar spectra are now by default drawn from the PHOENIX models catalog rather than the Castelli & Kurucz
2004 models. This is because the PHOENIX models have better spectral sampling at mid-infrared wavelengths.

• Default centroid box sizes are now consistent for measure_centroid() and the markcenter option to dis-
play_PSF(). (Thanks to Charles Lajoie for noting the discrepancy)

• TFI class (deprecated in version 0.2.6) now removed.

14.3.12 Version 0.2.7

Released December 6, 2011

• Bug fix for installation problems in previous release 0.2.6 (thanks to Anand Sivaramakrishnan and Kevin Fla-
herty for bringing the problem to my attention).

• Updated FITS keywords for consistency with JWST Data Management System (DMS) based on DMS Software
Design Review 1.

– “PUPIL” keyword now is used for pupil mechanisms instead of OTE pupil intensity filename; the filename
is available in “PUPILINT” now, for consistency with the OPD filename in “PUPILOPD” now.

– “CORONMSK” instead of CORON

– Some minor instrument-specific FITS keywords added via new _instrument_fits_header() functions for
each instrument object.

– For instance, NIRCam PSFs now have “MODULE” and “CHANNEL” keywords (eg. “MODULE = A”,
“CHANNEL = Short”). Note that there is no optical difference between modules A and B in this version
of webbpsf.

• Added support for weak lenses in NIRCam. Note that the +4 lens is in the filter wheel and is coated with a
narrowband interference filter similar to but wider than F212N. WebbPSF currently does not model this, and
will let you simulate weak lens observations with any filter you want. As always, it’s up to the user to determine
whether a given webbpsf configuration corresponds to an actual physically realizable instrument mode.

14.3.13 Version 0.2.6

Released November 7, 2011

• Updated & renamed TFI -> NIRISS.
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– Removed etalon code.

– Added in filters transmissions copied from NIRCam

– Removed coronagraphic Lyot pupils. Note: the coronagraphic occulting spots are machined into the pick-
off mirror so will still fly, and thus are retained in the NIRISS model.

– Slitless spectroscopy not yet supported; check back in a future version.

– Fix to FITS header comments for NIRISS NRM mask file for correct provenance information.

– TFI class still exists for back compatibility but will no longer be maintained, and may be removed in a
future version of webbpsf.

• Strehl measurement code caches computed perfect PSFs for improved speed when measuring many files.

• Added GUI options for flat spectra in F_nu and F_lambda. (Thanks to Christopher Willmer at Steward Obser-
vatory for this suggestion)

• “display_psf” function renamed to “display_PSF” for consistency with all-uppercase use of PSF in all function
names.

• numpy and pylab imports changed to ‘np’ and ‘plt’ for consistency with astropy guidelines (http://astropy.
wikispaces.com/Astropy+Coding+Guidelines)

• poppy.py library updates (thanks to Anand Sivaramakrishnan for useful discussions leading to several of these
improvements):

– Rotation angles can be specified in either degrees or radians. Added units parameters to Rota-
tions.__init__

– OpticalElement objects created from FITS files use the filename as a default optic name instead of “un-
named optic”.

– FITSOpticalElement class created, to separate FITS file reading functionality from the base OpticalEle-
ment class. This class also adds a ‘pixelscale’ keyword to directly specify the pixel scale for such a file, if
not present in the FITS header.

– Removed redundant ‘pupil_scale’ attribute: ‘pixelscale’ is now used for both image and pupil plane pixel
scales.

– unit test code updates & improvements.

• Miscellaneous minor documentation improvements.

14.3.14 Version 0.2.5

Initial public release, June 1 2011. Questions, comments, criticism all welcome!

• Improved spectrum display

• Improved display of intermediate results during calculations.

14.3.15 Versions 0.2.1 - 0.2.3

• Smoother installation process (thanks to Anand Sivaramakrishan for initial testing)

• Semi-analytic coronagraphic algorithm added for TFI and NIRCam circular occulters (Soummer et al. 2007)

• Advanced settings dialog box added to GUI

• NIRCam pixel scale auto-switching will no longer override custom user pixelscales.
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• slight fix to pupil file pixel scales to reflect JWST flat-to-flat diameter=6.559 m rather than just “6.5 m”

• Corrected NIRCam 430R occulter profile to exactly match flight design; other occulters still need to be tuned.
Corrected all for use of amplitude rather than intensity profiles (thanks to John Krist for comparison models).

• added TFI NRM mode (thanks to Anand Sivaramakrishnan)

14.3.16 Version 0.2

Initial STScI internal release, spring 2011. Questions, comments, criticism all welcome!

• Much improved pysynphot support.

• Reworked calling conventions for calcPSF() routine source parameters.

• poppy.calcPSFmultiprocessor merged in to regular poppy.calcPSF

• Minor bug fixes to selection of which wavelengths to compute for more even sampling

• Default OPDs are now the ones including SI WFE as well as OTE+ISIM.

• Improved fidelity for NIRCam coronagraphic occulter models including ND squares and substrate border.

14.3.17 Version 0.1

Development, fall 2010.

• Support for imaging mode in all SIs and FGS

• Support for coronagraphy with MIRI, NIRCam, and TFI. Further enhancements in fidelity to come later. Coro-
nagraphic calculations are done using the direct FFT method, not Soummer’s semi-analytic method (though that
may be implemented in the future?).

• Up-to-date science frame axes convention, including detector rotations for MIRI and NIRSpec.

• Tunable wavelengths and appropriate bandwidths for TFI.

• Partial support for modeling IFU PSFs through use of the ‘monochromatic’ parameter.

• Revision V OPD files for OTE and SIs. Produced by Ball Aerospace for Mission CDR, provided by Mark
Clampin.
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Appendix: Available Optical Path Difference (OPD) files

For each of the five instruments (four SIs plus FGS) there are three provided OPD files. These represent wavefronts as
follows:

1. The OTE and ISIM intrinsic WFE

2. The above, plus a slight defocus to blur the image slightly to approximate image motion.

3. The above #2, plus additional WFE due to SI internal optics.

The latter is the largest WFE, and is the default file used in simulations unless another is explicitly chosen. For
NIRCam only there is a second, duplicate set of these files with slightly improved WFE based on an optimistic case
scenario for instrument and telescope alignment.

The provided OPDs are based on the observatory design requirements, and were developed for the Mission Critical
Design Review. The represent the nominal case of performance for JWST, and have not yet been updated with as-built
details of mirror surface figures, etc. We intend to make updated OPD files available once suitable reference data have
been provided to STScI. For now, see Lightsey et al. 2014 for recent predictions of JWST’s likely performance

Note that the trick of adding some (nonphysical) defocus to blur out the PSF is computationally easy and rapid, but
does not give a high fidelity representation of the true impact of image jitter. This is particularly true for coronagraphic
observations. Future versions of WebbPSF will likely provide higher fidelity jitter models.

The units of the supplied OPD files are wavefront error in microns.
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Table 1: Rev V OPDs
File Instru-

ment
RMS
WFE

Includes OTE + ISIM
OPD?

Image motion (as de-
focus)?

SI
OPD?

OPD_RevV_fgs_150.fits FGS 150.0 Yes No No
OPD_RevV_fgs_163.fits FGS 163.0 Yes Yes No
OPD_RevV_fgs_186.fits FGS 186.0 Yes Yes Yes
OPD_RevV_miri_204.fitsMIRI 204.0 Yes No No
OPD_RevV_miri_220.fitsMIRI 220.0 Yes Yes No
OPD_RevV_miri_421.fitsMIRI 421.0 Yes Yes Yes
OPD_RevV_nircam_115.fitsNIRCam 115.0 Yes, optimistic case No No
OPD_RevV_nircam_123.fitsNIRCam 123.0 Yes No No
OPD_RevV_nircam_132.fitsNIRCam 132.0 Yes, optimistic case Yes No
OPD_RevV_nircam_136.fitsNIRCam 136.0 Yes Yes No
OPD_RevV_nircam_150.fitsNIRCam 150.0 Yes, optimistic case Yes Yes
OPD_RevV_nircam_155.fitsNIRCam 155.0 Yes Yes Yes
OPD_RevV_nirspec_125.fitsNIRSpec 125.0 Yes No No
OPD_RevV_nirspec_145.fitsNIRSpec 145.0 Yes Yes No
OPD_RevV_nirspec_238.fitsNIRSpec 238.0 Yes Yes Yes
OPD_RevV_niriss_144.fitsNIRISS 144.0 Yes No No
OPD_RevV_niriss_162.fitsNIRISS 162.0 Yes Yes No
OPD_RevV_niriss_180.fitsNIRISS 180.0 Yes Yes Yes
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CHAPTER 16

Appendix: Instrument Property References

We give here references for the instrumental properties assumed in PSF computations, with particular attention to
coronagraphic optics. It also notes several places where the current models or available files are limited in some
manner that might be improved in a future release.

Instrument pixel scales are all based on average best estimate scales available in April 2016, specifically from values
in the Science Instruments Aperture File (SIAF) data, as provided by the various instrument teams to the Telescope
group via the SIAF Working Group. For instruments with multiple detectors, the values provided are averaged over the
relevant detectors. WebbPSF calculates PSFs on an isotropic pixel grid (i.e. square pixels), but at high precision the
SI pixel scales can differ between the X and Y axes by between 0.5% (for NIRCam) up to 2.5% (for FGS). WebbPSF
also does not model any of the measured distortions within the instruments.

WebbPSF does not include any absolute throughput information for any SIs, only the relative weighting for different
wavelengths in a broadband calculation. See the note on PSF normalization for further discussion.

Note: The WebbPSF software and all of its associated data files are entirely ITAR-free.

16.1 OTE

The supplied OPDs are the Mission CDR OPD simulation set, produced in March 2010 by Ball Aerospace staff (Paul
Lightsey et al.) via the IPAM optical model using Zernike WFE coefficients consistent with Revision V of the JWST
optical error budget.

Note: The provided files included no header metadata, and in particular no pixel scale, so one was assumed based on
the apparent pupil diameter in the files. The estimated uncertainty in this scale is 1 part in 1000, so users concerned
with measurements of PSF FWHMs etc at that level should be cautious.

The current model pixel scale, roughly 6 mm/pixel, is too coarse to resolve well the edge roll-off around the border of
each segment. We make no attempt to include such effects here at this time. An independent study using much more
finely sampled pupils has shown that the effect of segment edge roll-off is to scatter ~2% of the light from the PSF
core out to large radii, primarily in the form of increased intensity along the diffraction spikes (Soummer et al. 2009,
Technical Report JWST-STScI-001755)
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16.2 NIRCam

NIRCam focal plane scale: 0.0311 +- 0.0002 (short wave), 0.0630 +- 0.0002 (long wave). SOC PRD SIAF
PRDDEVSOC-D-012, 2016 April

The coronagraph optics models are based on the NIRCam instrument team’s series of SPIE papers describing the
coronagraph designs and flight hardware. (Krist et al. 2007, 2009, 2010 Proc. SPIE), as clarified through cross
checks with information provided by the NIRCam instrument team (Krist, private communication 2011). Currently,
the models include only the 5 arcsec square ND acquisition boxes and not the second set of 2 arcsec squares.

Weak lenses: The lenses are nominally +- 8 and +4 waves at 2.14 microns. The as built defocus values are as follows
based on component testing: 7.76198, -7.74260, 3.90240.

16.3 NIRSpec

NIRspec field of view rotation: 138.4 degrees (average over both detectors). SOC PRD SIAF PRDDEVSOC-D-012,
2016 April

NIRSpec pixel scale 0.1043 +- 0.001 arcsec/pixel. SOC PRD SIAF PRDDEVSOC-D-012, 2016 April

NIRSpec internal pupil at the grating wheel: based on size of grating stop in Zemax file as analyzed and back projected
onto the primary mirror by Erin Elliott, private communication 2013.

16.4 NIRISS

NIRISS focal plane scale, 0.0656 +- 0.0005 arcsec/pix: SOC PRD SIAF PRDDEVSOC-D-012, 2016 April

Occulting spots: Assumed to be perfect circles with diameters 0.58, 0.75, 1.5, and 2.0 arcsec. Doyon et al. 2010 SPIE
7731. While these are not likely to see much (any?) use with NIRISS, they are indeed still present in the pickoff mirror
hardware, so we retain the ability to simulate them.

NIRISS internal pupils: The regular imaging mode internal pupil stop is a 4% oversized tricontagon (with sharp
corners). See Doyon et al. Proc SPIE 2012 Figure 2. The CLEARP pupil has an oversized central obscuration plus
3 support vanes. Details based on NIRISS design drawing 196847Rev0.pdf “Modified Calibration Optic Holder”
provided by Loic Albert. NRM occulter mask: digital file provided by Anand Sivaramakrishnan. GR700XD mask
design details provided by Loic Albert.

16.5 MIRI

MIRIM focal plane scale, 0.1110 +- 0.001 arcsec/pix: SOC PRD SIAF PRDDEVSOC-D-012, 2016 April

MIRIM field of view rotation, 5.0152 degrees: SOC PRD SIAF PRDDEVSOC-D-012, 2016 April

Coronagraph pupils rotated to match, 4.56 degrees: MIRI-DD-00001-AEU 5.7.8.2.1

Coronagraphic FOVs, 30.0 arcsec for Lyot, 24.0x23.8 arcsec for FQPMs: MIRI-DD-00001-AEU 2.2.1

Lyot coronagraph occulting spot diameter, 4.25 arcsec:

Lyot coronagraph support bar width, 0.46 mm = 0.722 arcsec: Anthony Boccaletti private communication December
2010 to Perrin and Hines

Lyot mask files: Anthony Boccaletti private communication to Remi Soummer

116 Chapter 16. Appendix: Instrument Property References



webbpsf Documentation, Release 0.8.0

LRS slit size (4.7 x 0.51 arcsec): MIRI-TR-00001-CEA. And LRS Overview presentation by Silvia Scheithaur to
MIRI team meeting May 2013.

LRS P750L grating aperture mask (3.8% oversized tricontagon): MIRI OBA Design Description, MIRI-DD-00001-
AEU

MIRI imager internal pupil stop in regular imaging mode: 4% oversized tricontagon, mounted on each of the imaging
filters (with smoothed corners).

16.6 Instrument + Filter Throughputs

Where possible, instrumental relative spectral responses were derived from the Pysynphot CDBS files used for the
development version of the JWST Exposure Time Calculators (ETCs), normalized to peak transmission = 1.0 (because
absolute throughput is not relevant for PSF calculations). Not all filters are yet supported in Pysynphot, however.

For the following filters we take information from alternate sources other than the CDBS:

Instrument Filter Source
----------- ------------- ---------------------------------------------------------------------------
→˓-------------------------------
NIRCam F150W2 Top-hat function based on filter properties list at http://ircamera.as.
→˓arizona.edu/nircam/features.html
NIRCam F322W2 Top-hat function based on filter properties list at http://ircamera.as.
→˓arizona.edu/nircam/features.html
NIRSpec F115W Assumed to be identical to the NIRCam one
NIRSpec F140X NIRSpec "BBA" transmission curve traced from NIRSpec GWA FWA Assembly␣
→˓Report, NIRS-ZEO-RO-0051, section 6.3.2
MIRI F*W filters Data published in Glasse et al. 2015 PASP Vol 127 No. 953, p. 688 Fig 2
MIRI F*C filters Data published in Bouchet et al. 2015 PASP Vol 127 No. 953, p. 612 Fig 3
NIRISS all filters Measurement data provided by Loic Albert of the NIRISS team
FGS none Assumed top-hat function based on detector cut-on and cut-off wavelengths.

The MIRI wide filters (F*W) are total system photon conversion efficiencies including filter, telescope, instrument,
and detector throughputs, normalized to unity. The MIRI coronagraphic filters are just the filters themselves, but
the detector and optics throughputs are relatively flat with wavelength compared to the narrow coronagraphic filters.
These are sufficiently accurate for typical coronagraphic modeling but be aware of that caveat if attempting precise
photometric calculations.

For the NIRCam and NIRSpec filters called out in the table above, the provided throughputs do not include the detector
QE or OTE/SI optics throughputs versus wavelength.

All other filters do include these effects, to the extent that they are accurately captured in the Calibration Database in
support of the ETCs.
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CHAPTER 17

Releasing a new version of WebbPSF

17.1 Prerequisites

• Is the build passing on Travis?

• Are you up to date with master on the upstream branch (spacetelescope/webbpsf)?

• Do you have twine installed?

• Do you have access to WebbPSF on PyPI with the owner or maintainer role?

• Do you have your ~/.pypirc filled out? (more info)

17.2 Releasing new data packages

1. Run dev_utils/make-data-sdist.sh (details below) to make a gzipped tarred archive of the WebbPSF data

2. If the new data package is required (meaning you can’t run WebbPSF without it, or you can run but may get
incorrect results), you must bump DATA_VERSION_MIN in __init__.py to (0, X, Y)

3. Extract the resulting data archive and check that you can run the WebbPSF tests with WEBBPSF_PATH pointing to
it

4. Copy the data archive into public web space

5. cd to /grp/jwst/ote and remove the webbpsf-data symlink

6. Copy the archive into /grp/jwst/ote/ and extract it to /grp/jwst/ote/webbpsf-data

7. Rename the folder to webbpsf-data-0.x.y

8. Create a symbolic link at /grp/jwst/ote/webbpsf-data to point to the new folder

9. Update the URL in installation.rst under Installing the Required Data Files
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Invoke dev_utils/make-data-sdist.sh one of the following ways to make a gzipped tarred archive of the WebbPSF
data suitable for distribution.

If you are on the Institute network:

$ cd webbpsf/dev_utils/
$ ./make-data-sdist.sh 0.X.Y
$ cp ./webbpsf-data-0.X.Y.tar.gz /path/to/public/web/directory/

If you’re working from a local data root:

$ cd webbpsf/dev_utils/
$ DATAROOT="/Users/you/webbpsf-data-sources/" ./make-data-sdist.sh 0.X.Y
$ cp ./webbpsf-data-0.X.Y.tar.gz /where/ever/you/want/

17.3 Releasing new versions on PyPI

1. Edit relnotes.rst to add a release date and reference anchor (e.g. .. _rel0.X.Y:) to the section for this
release

2. Update the link to “What’s new” in index.rst

3. Add any important notes to the appropriate section in the release notes

4. Edit setup.py in this repository to remove .dev from the version number in the VERSION variable

5. Build a source distribution with python setup.py build sdist

6. Copy the resulting file (webbpsf-0.X.Y.tar.gz) to a new folder, extract it, and cd there

7. Run python setup.py test (preferably in a new virtualenv containing only the WebbPSF dependencies)
and verify that the test suite passes with the code you’re about to release

8. If that runs as expected, cd back to your webbpsf repository and run twine upload dist/webbpsf-0.X.Y.
tar.gz for your new version

9. Verify that the latest version is visible and others are hidden on the PyPI package editing page

17.3.1 Finishing the release

1. Commit your edits to relnotes.rst and setup.py

2. Tag that commit as the release with git tag v0.X.Y and push the tags to origin and upstream with git push
--tags origin and git push --tags upstream

3. Edit setup.py to increment the version number in the VERSION variable and re-add the .dev suffix

4. Edit relnotes.rst to add a new heading for the upcoming version

5. Commit your edits with a message like “Back to development: version 0.X.Y+1”

6. Email an announcement to webbpsf-users@stsci.edu

17.4 Releasing a new version through AstroConda

To test that an Astroconda package builds, you will need conda-build:
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$ conda install conda-build

1. Fork (if needed) and clone https://github.com/astroconda/astroconda-contrib

2. If there is a new version of POPPY available to package, edit poppy/meta.yaml to reflect the new version and
git_tag.

3. If the minimum needed version of the webbpsf-data package has changed in webbpsf/__init__.py, edit
webbpsf-data/meta.yaml to reflect the new version and url.

4. Edit webbpsf/meta.yaml to reflect the new versions of POPPY and webbpsf-data, if necessary.

5. Edit in the git_tag name from git tag in the PyPI release instructions (v0.X.Y).

6. Verify that you can build the package from the astroconda-contrib directory: conda build -c http://ssb.
stsci.edu/astroconda webbpsf

7. Commit your changes to a new branch and push to GitHub.

8. Create a pull request against astroconda/astroconda-contrib.

9. Wait for SSB to build the conda packages.

10. (optional) Create a new conda environment to test the package installation following these instructions.

How to cite WebbPSF

In addition to this documentation, WebbPSF is described in the following references. Users of WebbPSF are encour-
aged to cite one of these.

• Perrin et al. 2014, “Updated point spread function simulations for JWST with WebbPSF”, Proc. SPIE. 9143,

• Perrin et al. 2012, “Simulating point spread functions for the James Webb Space Telescope with WebbPSF”,
Proc SPIE 8842, and

• Perrin 2011, Improved PSF Simulations for JWST: Methods, Algorithms, and Validation, JWST
Technical report JWST-STScI-002469.

In particular, the 2012 SPIE paper gives a broad overview, the 2014 SPIE paper presents comparisons to instrument
cryotest data, and the Technical Report document describes in more detail the relevant optical physics, explains design
decisions and motivation for WebbPSF’s architecture, and presents extensive validation tests demonstrating consis-
tency between WebbPSF and other PSF simulation packages used throughout the JWST project.

• genindex

• search

Mailing List

If you would like to receive email announcements of future versions, please contact Marshall Perrin, or visit maillist.
stsci.edu to subscribe yourself to the “webbpsf-users@maillist.stsci.edu” list.
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psf_grid() (webbpsf.JWInstrument method), 79
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